High Strain Rate Tension and Compression Tests

2000 ◽  
pp. 429-446 ◽  
2015 ◽  
Vol 651-653 ◽  
pp. 114-119 ◽  
Author(s):  
Marco Sasso ◽  
Archimede Forcellese ◽  
Michela Simoncini ◽  
Dario Amodio ◽  
Edoardo Mancini

The aim of this work is to study the mechanical properties of alloy AA7075 in both T6 and O temper states, in terms of visco-plastic and fracture behavior. Tension and compression tests were carried out starting from the quasi-static loading condition 10-3 up to strain rates as high as 2 x 103 s-1. The high strain rate tests were performed using a Split Hopkinson Tension-Compression Bar (SHTCB) apparatus. The tensile specimens were also subjected to micro-fractography analysis by Scanning Electronic Microscope (SEM) to evaluate the characteristics of the fracture. The results show a different behavior for the two temper states: AA7075-O showed a significant sensitivity to strain rate, with a ductile behavior and a fracture morphology characterized by coalescence of microvoids, whilst AA7075-T6 is generally characterized by a less ductile behaviour, both as elongation at break and as fracture morphology. Brittle cleavage is accentuated with increasing strain rate. The Johnson-Cook viscoplastic model wad also used to fit the experimental data with an optimum matching.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


2021 ◽  
Vol 180 ◽  
pp. 111398
Author(s):  
Muhammad Abubaker Khan ◽  
Yangwei Wang ◽  
Muhammad Hamza ◽  
Ghulam Yasin ◽  
Mohammad Tabish ◽  
...  

2007 ◽  
Vol 7-8 ◽  
pp. 251-256 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

High strain-rate compressive responses of AA7075-T651 and its welds as produced by the friction stir welding (or FSW) process are investigated using the conventional split Hopkinson pressure bar. Cylindrical specimens machined along the thickness direction of the base material (AA7075-T651) and the friction stir (FS) welds are used in the static and impact compression tests. The micro-hardness tests are conducted across the centerline of a FS welded AA707-T651 joint in order to examine the microstructural change. It is shown that FSW reduces the compressive flow stress of the FS weld (weld nugget) to below that of the base material, and both the base material and the FS weld exhibit almost no strain rate effects up to nearly € ε˙ =103/s.


Author(s):  
S. Aghayan ◽  
S. Bieler ◽  
K. Weinberg

AbstractThe usage of resin-based materials for 3D printing applications has been growing over the past decades. In this study, two types of resins, namely a MMA-based resin and an ABS-based tough resin, are subjected to compression tests on a split Hopkinson pressure bar to deduce their dynamic properties under high strain rate loading.Two Hopkinson bar setups are used, the first one is equipped with aluminum bars and the second one with PMMA bars. From the measured strain waves, elastic moduli at high strain rates are derived. Both setups lead to values of $E=3.4$ E = 3.4 –3.8 GPa at a strain rate of about 250 s−1. Numerical simulations support the experiments. Moreover, considering the waves gained from the two different bar setups, PMMA bars appear to be well-suited for testing resin samples and are therefore recommended for such applications.


2007 ◽  
Vol 539-543 ◽  
pp. 2269-2274 ◽  
Author(s):  
J.Y. Kim ◽  
In Ok Shim ◽  
H.K. Kim ◽  
S.S. Hong ◽  
Soon Hyung Hong

Deformation behaviors under quasi-static and dynamic compression and high velocity impact condition of Ti-6Al-4V ELI (extra low interstitial) alloys in two different conditions were investigated. Mill annealed (MA) alloy, consisted of equiaxed α, and thermomechanically treated (TMT) alloy, consisted of mixed structure of equiaxed α and transformed β, were prepared. Compression tests were performed in low strain rate regime using hydraulic testing machine and were performed in high strain rate regime using split Hopkinson pressure bar. High velocity impact tests were also performed by impacting the test projectiles made of these alloys against a steel target at a velocity of ~400m/s. The compression test results showed that deformation behaviors were influenced by the strain hardening exponent at low strain rate regime, and by both the strain hardening exponent and the strain-rate hardening rate at high strain rate regime. TMT alloy showed higher strength but almost similar fracture strain as MA alloy at a high strain rate of ~6000/s, due to the effect of strain-rate hardening. The high velocity impact test results showed that the projectile of TMT alloy withstood without fracture at higher impact velocity, but the maximum amounts of deformation prior to crack were nearly the same for both alloys. These results were in accord with the results of compression tests at high strain rate regime, that is, higher strength but same fracture strain of TMT alloy compared to MA alloy.


Sign in / Sign up

Export Citation Format

Share Document