An Overview of Aircraft Accident Investigation and Component Failures

2021 ◽  
pp. 778-786
Author(s):  
Ellen E. Wright ◽  
Suzanne F. Uchneat

Abstract This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.

Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Geraldine Cáceres Sepúlveda ◽  
Silvia Ochoa ◽  
Jules Thibault

AbstractDue to the highly competitive market and increasingly stringent environmental regulations, it is paramount to operate chemical processes at their optimal point. In a typical process, there are usually many process variables (decision variables) that need to be selected in order to achieve a set of optimal objectives for which the process will be considered to operate optimally. Because some of the objectives are often contradictory, Multi-objective optimization (MOO) can be used to find a suitable trade-off among all objectives that will satisfy the decision maker. The first step is to circumscribe a well-defined Pareto domain, corresponding to the portion of the solution domain comprised of a large number of non-dominated solutions. The second step is to rank all Pareto-optimal solutions based on some preferences of an expert of the process, this step being performed using visualization tools and/or a ranking algorithm. The last step is to implement the best solution to operate the process optimally. In this paper, after reviewing the main methods to solve MOO problems and to select the best Pareto-optimal solution, four simple MOO problems will be solved to clearly demonstrate the wealth of information on a given process that can be obtained from the MOO instead of a single aggregate objective. The four optimization case studies are the design of a PI controller, an SO2 to SO3 reactor, a distillation column and an acrolein reactor. Results of these optimization case studies show the benefit of generating and using the Pareto domain to gain a deeper understanding of the underlying relationships between the various process variables and performance objectives.


2017 ◽  
Vol 16 (4) ◽  
pp. 155-160
Author(s):  
Ian Johnston

Purpose This paper aims to show that everything a business does is fundamentally reliant on its culture. Culture determines how successful a strategy is and whether that strategy can be executed. If the culture in a business is out of alignment, it is imperative to change it. This paper examines how HR professionals can take ownership of this cultural space and help to create a growth mindset throughout the organisation. Design/methodology/approach The paper is based on experience gained through working with several large organisations to transform their people culture and performance by embracing a growth mindset and to help their HR leadership become the early champions of change, thus ensuring the process was successfully delivered. The paper includes case studies of two organisations where successful cultural shaping delivered improved results. Findings Companies with a growth mindset will outperform those with a fixed mindset. Changing mindsets is not overly complex, but it requires flawless implementation with the HR leaders at the forefront. Originality/value As Lou Gerstner, who turned around the computing giant IBM, said “I finally realised that culture is not part of the game, it is the game”. By understanding how individual mindsets impact culture, HR professionals can own and drive their organisation’s culture-shaping efforts.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Andreas Peters ◽  
Zoltán S. Spakovszky

Due to their inherent noise challenge and potential for significant reductions in fuel burn, counter-rotating propfans (CRPs) are currently being investigated as potential alternatives to high-bypass turbofan engines. This paper introduces an integrated noise and performance assessment methodology for advanced propfan powered aircraft configurations. The approach is based on first principles and combines a coupled aircraft and propulsion system mission and performance analysis tool with 3D unsteady, full-wheel CRP computational fluid dynamics computations and aeroacoustic simulations. Special emphasis is put on computing CRP noise due to interaction tones. The method is capable of dealing with parametric studies and exploring noise reduction technologies. An aircraft performance, weight and balance, and mission analysis was first conducted on a candidate CRP powered aircraft configuration. Guided by data available in the literature, a detailed aerodynamic design of a pusher CRP was carried out. Full-wheel unsteady 3D Reynolds-averaged Navier-Stokes (RANS) simulations were then used to determine the time varying blade surface pressures and unsteady flow features necessary to define the acoustic source terms. A frequency domain approach based on Goldstein’s formulation of the acoustic analogy for moving media and Hanson’s single rotor noise method was extended to counter-rotating configurations. The far field noise predictions were compared to measured data of a similar CRP configuration and demonstrated good agreement between the computed and measured interaction tones. The underlying noise mechanisms have previously been described in literature but, to the authors’ knowledge, this is the first time that the individual contributions of front-rotor wake interaction, aft-rotor upstream influence, hub-endwall secondary flows, and front-rotor tip-vortices to interaction tone noise are dissected and quantified. Based on this investigation, the CRP was redesigned for reduced noise incorporating a clipped rear-rotor and increased rotor-rotor spacing to reduce upstream influence, tip-vortex, and wake interaction effects. Maintaining the thrust and propulsive efficiency at takeoff conditions, the noise was calculated for both designs. At the interaction tone frequencies, the redesigned CRP demonstrated an average reduction of 7.25 dB in mean sound pressure level computed over the forward and aft polar angle arcs. On the engine/aircraft system level, the redesigned CRP demonstrated a reduction of 9.2 dB in effective perceived noise (EPNdB) and 8.6 EPNdB at the Federal Aviation Regulations (FAR) 36 flyover and sideline observer locations, respectively. The results suggest that advanced open rotor designs can possibly meet Stage 4 noise requirements.


2010 ◽  
Vol 20 (02) ◽  
pp. 103-121 ◽  
Author(s):  
MOSTAFA I. SOLIMAN ◽  
ABDULMAJID F. Al-JUNAID

Technological advances in IC manufacturing provide us with the capability to integrate more and more functionality into a single chip. Today's modern processors have nearly one billion transistors on a single chip. With the increasing complexity of today's system, the designs have to be modeled at a high-level of abstraction before partitioning into hardware and software components for final implementation. This paper explains in detail the implementation and performance evaluation of a matrix processor called Mat-Core with SystemC (system level modeling language). Mat-Core is a research processor aiming at exploiting the increasingly number of transistors per IC to improve the performance of a wide range of applications. It extends a general-purpose scalar processor with a matrix unit. To hide memory latency, the extended matrix unit is decoupled into two components: address generation and data computation, which communicate through data queues. Like vector architectures, the data computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in addition to vector-scalar and vector-vector instructions. For controlling the execution of vector/matrix instructions on the matrix core, this paper extends the well known scoreboard technique. Furthermore, the performance of Mat-Core is evaluated on vector and matrix kernels. Our results show that the performance of four lanes Mat-Core with matrix registers of size 4 × 4 or 16 elements each, queues size of 10, start up time of 6 clock cycles, and memory latency of 10 clock cycles is about 0.94, 1.3, 2.3, 1.6, 2.3, and 5.5 FLOPs per clock cycle; achieved on scalar-vector multiplication, SAXPY, Givens, rank-1 update, vector-matrix multiplication, and matrix-matrix multiplication, respectively.


1980 ◽  
Vol 29 (2) ◽  
pp. 127-136 ◽  
Author(s):  
L. R. T. Williams ◽  
J. B. Gross

A total of 22 monozygotic (MZ) and 41 dizygotic (DZ) twin pairs were given 72 trials on a stabilometer balance task over six days to study the extent of the genetic contribution to learning and performance of a gross motor skill. The expectations that interindividual differences would be less for the MZ than for the DZ twins and that intraindividual variability would not be different between the two groups were supported. Intraclass correlations were used to provide estimates for the proportions of total phenotypic variance accounted for by heritability (h2), systematic environmental variance (E2), and nonsystematic environmental effects (e2). Heritability was found to be low during the early stages of learning, before it increased to stabilize at approximately 65% for the remaining practice. E2 was highest during these early stages (24%), then declined quickly to stabilize at half that level. Error variance (e2) constituted the remaining variance. Learning profiles of the twin pairs were also analyzed, with a greater intrapair resemblance being found for the MZ twins. The present findings indicate that, for gross motor skills, there is considerable potential for influencing both the levels of performance (and learning) and the differences between individuals by judicious use of systematic environmental effects.


Sign in / Sign up

Export Citation Format

Share Document