Role of Dynamic Testing in Assessment of Bridges

1997 ◽  
Vol 1594 (1) ◽  
pp. 115-124 ◽  
Author(s):  
P. C. Das ◽  
J. S. Owen ◽  
B. J. Eccles ◽  
M. A. Woodings ◽  
B. S. Choo

Six reinforced concrete beams were loaded incrementally up to failure. After each increment the load was removed and measurements of the modal properties of the beams were made by impulse testing. The variation of the natural frequencies, frequency ratios, mode shapes, and the level of damage were investigated. It was found that on completion of the tests the natural frequencies of the beams had been reduced by an average of 25 percent in each mode. However, changes in mode shape were very small, and appreciable differences were only observed when the damage was highly localized. Modeling of the beam by using finite elements predicted trends that compared well with experimental observations. It is concluded that if dynamic testing were used in monitoring reinforced concrete structures, then the changes in frequency due to initial concrete cracking or yield of the reinforcement could be detected. More useful information associated with the spread and type of cracking through a structure may be detectable, although the level of the frequency changes is of the same order as those due to changes in ambient conditions.

2018 ◽  
Vol 21 (13) ◽  
pp. 1977-1989 ◽  
Author(s):  
Tengfei Xu ◽  
Jiantao Huang ◽  
Arnaud Castel ◽  
Renda Zhao ◽  
Cheng Yang

In this article, experiments focusing at the influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams are reported. In these experiments, the bond between concrete and reinforcing bar was damaged using appreciate flexural loads. The static stiffness of cracked reinforced concrete beam was assessed using the measured load–deflection response under cycles of loading and unloading, and the dynamic stiffness was analyzed using the measured natural frequencies with and without sustained loading. Average moment of inertia model (Castel et al. model) for cracked reinforced beams by taking into account the respective effect of bending cracks (primary cracks) and the steel–concrete bond damage (interfacial microcracks) was adopted to calculate the static load–deflection response and the natural frequencies of the tested beams. The experimental results and the comparison between measured and calculated natural frequencies show that localized steel–concrete bond damage does not influence remarkably the dynamic stiffness and the natural frequencies both with and without sustained loading applied. Castel et al. model can be used to calculate the dynamic stiffness of cracked reinforced concrete beam by neglecting the effect of interfacial microcracks.


2016 ◽  
Vol 20 (3) ◽  
pp. 316-330 ◽  
Author(s):  
Liye Zhang ◽  
Limin Sun

We carried out an experimental investigation to study the influence of concrete carbonation on the natural frequency of simply supported reinforced concrete beams. A total of 10 reinforced concrete test beams and 12 concrete-carbonation test specimens were subjected to different accelerated carbonation stages for 0, 7, 14, 21, and 28 days. Modal tests were performed on reinforced concrete test beams after the accelerated carbonation stages. In order to reduce the effect of other factors on the modal tests, constant temperature, relative humidity, and boundary conditions of the test beams were maintained in the experimental process. The experimental results show a trend of the natural frequencies of reinforced concrete test beams to decrease with the increase in concrete-carbonation depths. With statistical analyses of experimental data, this study established the relationship between concrete-carbonation depths and natural frequencies. Fitting lines for the drop in natural frequencies and carbonation depths are obtained for the first four modal frequencies. Based on the analysis of the physicochemical processes of concrete carbonation, the main reason behind the drop in natural frequencies is the increase in mass after concrete carbonation. The percentage composition of increase in mass after complete carbonation is obtained based on the analysis of the physicochemical process. This analysis demonstrates part of the reason for the drop in natural frequencies and proves that the experimental results are reliable and credible. This study provides further insight into the use of modal parameters to assess damage in concrete structures in structural health monitoring.


Structural beams in construction are subjected to significant torsional moment which affects the design of structures.Eight beams were produced with two distinct grade of concrete with two ratios of longitudinal as well as transverse reinforcements.An experiment for evaluation of torsional strength of reinforced concrete beams is presented in this paper.The main objective of this study is to access the role of varying percentage of transverse and longitudinal reinforcements on torsional strength of beams.Concrete grades of M 20 and M 30 beams were cast with 0.56% and 0.85% of longitudinal reinforcement as well as 50 mm and 75 mm spacing of stirrups.The experimental results are presented.The reported results include the behavioural curves and the values of torsional moment and angle of twist for entire 8 beams


Buildings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 34 ◽  
Author(s):  
Nino Spinella ◽  
Piero Colajanni ◽  
Antonino Recupero ◽  
Francesco Tondolo

Transverse reinforcement plays a key role in the response behavior of reinforced concrete beams. Therefore, corrosion of steel stirrups may change the failure mode of elements from bending to shear, leading to a brittle and catastrophic crisis. It is important to strengthen reinforced concrete beams with corroded stirrups to enhance the shear resistance. This paper presents a formulation, based on the modified compression field theory, to estimate the ultimate shear of reinforced concrete beams strengthened with FRP, because of stirrup corrosion. The detrimental effect of corrosion on steel stirrup yield strength was taken into account by introducing an empirical decay law. The effective strain of FRP reinforcement was adequately evaluated by considering both debonding and tensile stress rupture. The proposed model was validated against collected experimental results, showing a good ability to evaluate shear strength. Moreover, a numerical analysis was carried out to highlight the role of the key parameters predicting the ultimate shear.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 537-550
Author(s):  
Marios Filippoupolitis ◽  
Carl Hopkins

Earthquakes have the highest rate of mortality among the natural disasters and regularly lead to collapsed structures with people trapped inside them. When a reinforced concrete building collapses due to an earthquake, many of the concrete elements (i.e., beams and columns) are damaged and there are large sections where the concrete is missing and the steel reinforcement is exposed (i.e., concrete discontinuities). The prediction of vibration transmission in collapsed and severely damaged reinforced-concrete buildings could help decisions when trying to detect trapped survivors; hence there is need for experimentally validated finite element models of damaged concrete elements. This paper investigates the dynamic behaviour of damaged reinforced concrete beams using Experimental Modal Analysis (EMA) and Finite Element Methods (FEM). FEM models are assessed using two beams with one or more concrete discontinuities that form dowel-type joints. These models used either beam or spring elements for the exposed steel bars and were experimentally validated against EMA in terms of eigenfrequencies and mode shapes. Improved agreement was achieved when using springs instead of beam elements in the FEM model. The comparison of mode shapes used the Partial Modal Vector Ratio (PMVR) as a supplement to the Modal Assurance Criterion (MAC) to confirm that spring elements provide a more accurate representation of the response on all concrete parts of the beams.


Sign in / Sign up

Export Citation Format

Share Document