Analysis of Quality Control and Quality Assurance Data for Superpave Mixes

Author(s):  
Frazier Parker ◽  
M. Shabbir Hossain ◽  
Jiansheng Song

Asphalt content, voids, and mat density quality control–quality assurance data were collected for selected Marshall and Superpave mixes during 1997 and for selected Superpave mixes during 1998 and 1999. Analyses indicate that the accuracies and variabilities of asphalt content measurements for Marshall and Superpave mixes are comparable. However, analyses also indicate that the accuracies and variabilities of voids and mat density measurements are not comparable. Moreover, variabilities for Superpave mixes are much higher, and measurements for Superpave mixes are more off target than those for Marshall mixes. The effects of gyratory compactor use, mix design range for an equivalent single-axle load, and maximum aggregate size were investigated to explain the observed differences. Although few consistent trends were observed, all these factors seem to affect the variabilities and accuracies of air voids and mat densities of Superpave mixes.

Author(s):  
Robert P. Elliott ◽  
Yanjun Qiu

A common provision in quality control/quality assurance construction contracts is the adjustment of the contractor's pay on the basis of the quality of the construction. The expected impact of the provision on the pay should be examined to ensure that the adjustments are neither unduly severe nor excessively lenient. Most pay adjustment plans have been developed around a quality index by using a percent defective approach. Analyses of these plans are complex but reasonably well defined. Other plans, however, are more complex and do not lend themselves to direct analysis. These plans can be examined by computer simulation. The use of computer simulation to examine a complex pay adjustment provision is demonstrated. The analyses show that simulation can reveal that a pay adjustment schedule behaves differently than it appears on the surface. For example, the schedule examined bases pay solely on averages and appears to ignore construction variability. The analyses, however, demonstrate that the pay adjustments are at least as sensitive to construction variability as they are to construction averages. It is also shown that the simulation process can provide a better, more detailed examination of the pay schedule than is possible by simply determining the expected pay. In particular, the simulation process can provide an indication of the variability of pay at various quality levels and can identify the factors most responsible for pay adjustments.


Author(s):  
Graham C. Hurley ◽  
Brian D. Prowell

Four methodologies for determining the asphalt content of mixtures containing high-loss aggregates in the ignition furnace were evaluated: the standard method using the Thermolyne furnace (control), the Troxler NTO infrared furnace, the Ontario method, and a Tempyrox glass-cleaning oven. Six aggregate sources with high ignition furnace aggregate corrections were obtained from around the country: four dolomites, a basalt, and a serpentine/chlorite. Calibration factors were determined for each method at optimum asphalt content. Additional samples were then tested at optimum plus 0.5% asphalt content, and the measured asphalt content was calculated by using the correction factor determined for that method and aggregate source. The Tempyrox Pyro-Clean furnace, commonly used for cleaning laboratory glassware, produced the lowest aggregate correction factors. The standard method and the Ontario method, both using the Thermolyne ignition furnace, produced the smallest bias or error in measured asphalt content. The standard deviation of the corrected asphalt contents for these high-loss sources was higher than the within-laboratory standard deviation reported for AASHTO T308. The only exception was the Alabama source using the standard method. The Ontario method and Tempyrox oven generally reduced the variability of asphalt content measurements for high-loss aggregates. None of the methods evaluated statistically reduced aggregate breakdown on the nominal maximum aggregate size and 4.75-mm sieves. The Ontario method significantly reduced, but did not eliminate, aggregate breakdown on the 0.075-mm sieve. The Ontario method is the best method for immediate implementation for determining the asphalt content by the ignition method for high-loss aggregates.


Author(s):  
Stacey D. Diefenderfer ◽  
Benjamin F. Bowers ◽  
Kevin K. McGhee

In 2015, the Virginia Department of Transportation (VDOT) proposed changes to their specification for asphalt mix design. The changes incorporated a reduction of design gyrations from 65 to 50; the addition of constraints on the No. 4 (4.75 mm) and No. 30 (600 µm) sieves; and adjustments to the production value for voids filled with asphalt and minimum voids in mineral aggregate. Before these modifications were fully adopted, a study was performed to assess the effect of the changes on mixture properties and laboratory performance. Eleven pairs of asphalt mixtures were evaluated; the pairs consisted of a typical VDOT 65-gyration mixture produced under the specification current at the time and a companion 50-gyration mixture designed and produced in accordance with the proposed specification. Mixtures were evaluated to determine the effect of the design parameters on volumetric properties, gradation, and permeability. The changes had very little effect on volumetric properties or gradation. Permeability effects were mixed, with 9.5 mm nominal maximum aggregate size mixtures requiring greater compaction to meet permeability requirements and 12.5 mm nominal maximum aggregate size mixtures showing improved permeability even at higher air-void contents. For the 50-gyration mixtures, core air voids were reduced, indicating the potential for increased durability attributable to improved densification in the field.


Author(s):  
Benjamin F. Bowers

The work presented attempts to address reflective cracking of asphalt-surfaced pavements through binder modification with a highly polymer (HP)-modified asphalt binder. Nine asphalt mixtures ranging from fine dense-graded mixtures to stone matrix asphalt (SMA) mixtures were investigated with conventional polymer modified binders and HP binder. The dynamic modulus test, overlay test (OT), and semi-circular bend (SCB) test were used to evaluate the mixtures. In the cracking tests, HP mixtures outperformed the conventionally modified control mixtures for the same mixture type. For HP mixtures, in general, SMA mixtures performed better in the cracking test than dense-graded mixtures. One of the dense-graded mixtures having larger nominal maximum aggregate size (NMAS) performed better than the mixture with a smaller NMAS, whereas the other having a larger NMAS was not significantly different in crack testing. Further, a discussion on the calculation of bulk specific gravity and percent air voids in a cut OT and SCB specimen using saturated surface dry or vacuum sealing methods is presented.


Sign in / Sign up

Export Citation Format

Share Document