scholarly journals Controlling the southern root-knot nematode (Meloidogyne incognita Chitwood) with grafted and resistant pepper varieties

2010 ◽  
Vol 16 (2) ◽  
Author(s):  
Z. Mándoki

Newly bred resistant bell pepper varieties and those grafted onto resistant rootstock s were tested in soil severely infested with southern root-knot nematode [Meloidogy11e incognita (Kofoid and White) Chitwood] in unheated plastic house and compared to varieties on their own roots, in order to evaluate the efficiency of this environmentally friendly control method. 'Cinema F I ' carrying the N gene yielded significantly more than the two susceptible varieties. Varieties grafted onto resistant rootstocks outyielded those on their own roots although to different extent, which was not always significant. At the end of the vegetat ion period the roots of the rootstocks were undamaged and the roots of some resistant varieties were slightly infected. whereas the roots of susceptible varieties were severely damaged. According to our result  . both the use of resistant varieties and grafted plants offer an effective and environmentally safe way of controlling M. incognita.

Biologia ◽  
2012 ◽  
Vol 67 (3) ◽  
Author(s):  
Zübeyir Devran ◽  
Ömür Baysal

AbstractSouthern root knot nematode Meloidogyne incognita is the most widespread-species, causing serious yield losses in protected vegetables fields in the West Mediterranean region of Turkey. The knowledge of genetic variation within M. incognita is required for disease management and improvement of resistant varieties by breeding programs. In the present study, the isolates were classified into different groups based on sequence-related amplified polymorphism (SRAP) fingerprints. To our knowledge, this is the first study carried out on the characterization of M. incognita isolates using SRAP. The schematic diagram by tested primers to differentiate of M. incognita isolates was formed in discrimination of nematodes as an effective molecular tool since it is cost effective and easiness. Data presents a genetic variation on root-knot nematode species. These selected SRAP markers can be used to follow genetic structure and differentiation on M. incognita isolates in a certain region.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 188-190 ◽  
Author(s):  
Judy A. Thies ◽  
Don W. Dickson ◽  
Richard L. Fery

Two root-knot nematode-resistant bell pepper cultivars, ‘Charleston Belle’ and ‘Carolina Wonder’ (Capsicum annuum L. var. annuum], and their susceptible parents, ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’, were compared for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall and spring tests at Citra, FL. In the fall test, ‘Charleston Belle’ and ‘Carolina Wonder’ exhibited minimal root galling and nematode reproduction, and ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’ exhibited severe root galling and high nematode reproduction. Fruit yield of ‘Charleston Belle’ was 97% greater than yields of the two susceptible cultivars (P ≤ 0.006). In the spring test, one-half of the plots were treated with methyl bromide/chloropicrin before planting the same four bell pepper cultivars. ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’ grown in untreated control plots exhibited severe root galling and high nematode reproduction, but the other six cultivar × methyl bromide combinations exhibited minimal root galling and nematode reproduction. Although soil temperatures (10-cm depth) were greater than 30 °C on 78 days and 57 days during the Fall 2002 and Spring 2003 trials, respectively, resistance did not break in ‘Charleston Belle’ and ‘Carolina Wonder’ in either test. These results demonstrate that root-knot nematode-resistant cultivars such as Charleston Belle and Carolina Wonder are viable alternatives to methyl bromide for managing southern root-knot nematode in bell pepper in sub-tropical environments.


HortScience ◽  
2003 ◽  
Vol 38 (7) ◽  
pp. 1394-1396 ◽  
Author(s):  
Judy A. Thies ◽  
Richard L. Fery ◽  
John D. Mueller ◽  
Gilbert Miller ◽  
Joseph Varne

Resistance of two sets of bell pepper [(Capsicum annuum L. var. annuum (Grossum Group)] cultivars near-isogenic for the N gene that conditions resistance to root-knot nematodes [Meloidogyne incognita (Chitwood) Kofoid and White, M. arenaria (Neal) Chitwood races 1 and 2, and M. javanica (Treub) Chitwood] was evaluated in field tests at Blackville, S.C. and Charleston, S.C. The isogenic bell pepper sets were `Charleston Belle' (NN) and `Keystone Resistant Giant' (nn), and `Carolina Wonder' (NN) and `Yolo Wonder B' (nn). The resistant cultivars Charleston Belle and Carolina Wonder were highly resistant; root galling was minimal for both cultivars at both test sites. The susceptible cultivars Keystone Resistant Giant and Yolo Wonder B were highly susceptible; root galling was severe at both test sites. `Charleston Belle' had 96.9% fewer eggs per g fresh root than `Keystone Resistant Giant', and `Carolina Wonder' had 98.3% fewer eggs per g fresh root than `Yolo Wonder B' (averaged over both test sites). `Charleston Belle' and `Carolina Wonder' exhibited a high level of resistance in field studies at both sites. These results demonstrate that resistance conferred by the N gene for root-knot nematode resistance is effective in field-planted bell pepper. Root-knot nematode resistant bell peppers should provide economical and environmentally compatible alternatives to methyl bromide and other nematicides for managing M. incognita.


2002 ◽  
Vol 127 (3) ◽  
pp. 371-375 ◽  
Author(s):  
Judy A. Thies ◽  
Richard L. Fery

Expression of the N gene, which confers resistance to southern root-knot nematode (Meloidogyne incognita Kofoid and White) in bell pepper [(Capsicum annuum L. var. annuum (Grossum Group)], is modified at high temperatures (28 °C and 32 °C), but its expression in the heterozygous condition (Nn) has not been documented at moderate or high temperatures. Responses of the near-isogenic bell pepper cultivars, Charleston Belle and Keystone Resistant Giant (differing at the N locus), and the F1 and reciprocal F1 crosses between these cultivars to M. incognita race 3 were determined at 24, 28, and 32 °C in growth chamber experiments. `Keystone Resistant Giant' (nn) was susceptible at 24, 28, and 32 °C. `Charleston Belle' (NN) exhibited high resistance at 24 °C and resistance was partially lost at 28 and 32 °C. However, at 32 °C root gall and egg mass severity indices for `Charleston Belle' were still in the resistant range, and the number of M. incognita eggs per gram fresh root and reproductive index were 97% and 90% less, respectively, than for `Keystone Resistant Giant'. Responses of the F1 and F1 reciprocal hybrid populations to M. incognita were similar to the response of the resistant parent at all temperatures. Root fresh weights and top dry weights indicated that both hybrid populations tolerated M. incognita infections at least as well as `Charleston Belle'. These findings indicate that i) only one of the parental inbred lines needs to be converted to the NN genotype to produce F1 hybrid cultivars with fully functional N-type resistance to M. incognita; and ii) cytoplasmic factors are not involved in expression of N-type resistance and the resistant parental inbred can used to equal advantage as either the paternal or the maternal parent.


HortScience ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Judy A. Thies ◽  
Jennifer J. Ariss ◽  
Richard L. Hassell ◽  
Sharon Buckner ◽  
Amnon Levi

Root-knot nematode-resistant rootstock lines (designated RKVL for Root-Knot Vegetable Laboratory) derived from wild watermelon (Citrullus lanatus var. citroides) were compared with wild tinda (Praecitrullus fistulosus) lines and commercial cucurbit rootstock cultivars for grafting of seedless triploid watermelon ‘Tri-X 313’ (C. lanatus var. lanatus) in a field infested with the southern root-knot nematode (RKN) (Meloidogyne incognita) in Charleston, SC, during 2009 and 2010. In both years, RKN infection was severe in ‘Emphasis’ bottle gourd, ‘Strong Tosa’ hybrid squash, and wild tinda rootstocks with galling of the root system ranging from 86% to 100%. In 2009, the RKVL wild watermelon rootstocks exhibited lower (P < 0.05) percentages of root galling (range 9% to 16%) than non-grafted ‘Tri-X 313’ (41%), ‘Emphasis’, ‘Strong Tosa’, and the wild tinda rootstocks. The grafted wild watermelon rootstock RKVL 318 produced more (P ≤ 0.05) fruit (12 per plot) than all other entries (mean = five per plot), and it produced a heavier (P ≤ 0.05) fruit yield (29.5 kg per plot) than all entries except self-grafted ‘Tri-X 313’ (21.5 kg per plot). In 2010, soil in half of the plots was treated with methyl bromide (50%):chloropicrin (50%) (392 kg·ha–1) before planting. The RKVL wild watermelon rootstocks exhibited resistance to RKN with percentages of root system galled ranging from 11% for RKVL 316 to 56% for RKVL 301 in the untreated control plots. Fruit yields in the untreated plots were 21.9, 25.6, and 19.9 kg/plot for RKVL 301, RKVL 316, and RKVL 318, respectively. Yields were greater (P ≤ 0.05) for the three RKVL rootstocks than for ‘Strong Tosa’ (3.0 kg) and ‘Ojakkyo’ wild watermelon rootstock (2.8 kg) in the untreated plots. Yields of watermelon grafted on ‘Strong Tosa’ were nearly seven times greater (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. In contrast, yields of RKVL 316 and RKVL 318 were similar in both treatments and the yield of RKVL 301 was less (P ≤ 0.05) in the methyl bromide-treated plots than in the untreated plots. The three RKVL wild watermelon rootstock lines exhibited resistance to RKN. RKVL 316 had low root galling and produced the heaviest fruit yield and greatest numbers of fruit of any rootstock evaluated in 2010. The RKVL lines should be useful sources of RKN resistance for rootstocks for grafted watermelon.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 589-593 ◽  
Author(s):  
Judy A. Thies ◽  
Richard F. Davis ◽  
John D. Mueller ◽  
Richard L. Fery ◽  
David B. Langston ◽  
...  

‘Charleston Belle’, a root-knot nematode-resistant pepper (Capsicum annuum var. annuum [Grossum Group]), and its susceptible recurrent parent, ‘Keystone Resistant Giant’, were compared as spring crops for managing the southern root-knot nematode (Meloidogyne incognita) in fall-cropped cucumber (Cucumis sativus) and squash (Cucurbita pepo) at Blackville, SC and Tifton, GA. ‘Charleston Belle’ exhibited minimal root galling and nematode reproduction, and ‘Keystone Resistant Giant’ exhibited severe root galling and high nematode reproduction. Cucumber grown in plots following ‘Charleston Belle’ had lower (P ≤ 0.001) root gall severity indices than following ‘Keystone Resistant Giant’ (4.2 versus 4.9, respectively). Cucumber yields were 87% heavier (P ≤ 0.0001) and numbers of fruit were 85% higher (P ≤ 0.0001) in plots previously planted to ‘Charleston Belle’ than to ‘Keystone Resistant Giant’. Squash grown in plots following ‘Charleston Belle’ had lower (P ≤ 0.001) root gall severity indices than following ‘Keystone Resistant Giant’ (4.0 versus 4.8, respectively). Squash yields were 55% heavier (P ≤ 0.01) and numbers of fruit were 50% higher (P ≤ 0.001) in plots previously planted to ‘Charleston Belle’ than to ‘Keystone Resistant Giant’. These results demonstrate that root-knot nematode-resistant bell pepper cultivars such as ‘Charleston Belle’ are useful tools for managing M. incognita in double-cropping systems with cucurbit crops.


2010 ◽  
Vol 50 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Ishola Odeyemi ◽  
Steve Afolami ◽  
Olufemi Sosanya

Effect of Glomus Mosseae (Arbuscular Mycorrhizal Fungus) On Host - Parasite Relationship of Meloidogyne Incognita (Southern Root-Knot Nematode) on Four Improved Cowpea VarietiesTwo pot experiments and a field study were conducted in a Randomized Complete Block Design (RCBD). The experiments were conducted to determine the effect ofGlomus mosseae, a mycorrhiza fungus, on the reaction of four improved cowpea varieties toMeloidogyne incognita.Cowpea plants were inoculated with a single or a combination of 5 000 eggs ofM. incognitaand 50 g ofG. mosseaeinoculum containing 5 spores/g of soil. The standardized method of screening and reporting resistance of crop germplasm to root-knot nematodes at 60 days after planting, and the modified version of including yield for resistance rating at harvest were used for this study. Root galling due toM. incognitainfection was significantly lower on all the cowpea varieties treated withG. mosseaeand more significantly on IT90K-277-2 and IT89KD-288 in the screenhouse.G. mosseae, suppressed root-knot nematode reproduction on all the varieties compared to cowpea plants infected only byM. incognitaboth in the screenhouse and field experiments. Also,G. mosseaemitigated the damage attributable to the root-knot nematode on all these varieties. Using Gall Index (GI), reproduction factor and yield,G. mosseaewas effective in improving the resistance of the cowpea varieties toM. incognita.IT90K-76 cowpea variety was consistently resistant to the root-knot nematode, while IT90K-277-2 was tolerant withM. incognitainfection but resistant withG. mosseaetreatment. IT90K-941-1 variety was resistant in the screenhouse. The results of this study also confirmedG. mosseaeas a potential bio-control agent forM. incognitaon these cowpea varieties.


Sign in / Sign up

Export Citation Format

Share Document