scholarly journals A Forest Without Trees: Development of High-Surface-Area Materials for Enhanced-Sensitivity SAW Array

Author(s):  
W.G. Yelton ◽  
A.J. Ricco ◽  
A.W. Staton
2008 ◽  
Vol 8 (11) ◽  
pp. 5733-5738 ◽  
Author(s):  
Xicoténcatl López ◽  
Victor M. Castaño

Cr ion-polluted industrial water was treated with commercial activated carbon and with either mercaptane- and amine-functionallized silica nanoparticles, revealing that the use of relatively low surface area materials can advantageously compete with high surface area materials, traditionally utilized for removing hazardous metal ions, provided a proper surface functionalization of the nanoparticles is in place. FTIR and SEM characterization of the different materials and stages of the experiments are provided, as well.


2014 ◽  
Vol 353 ◽  
pp. 244-247
Author(s):  
Eun Jin Jung ◽  
Yoon Joo Lee ◽  
Woo Teck Kwon ◽  
Y. Kim ◽  
Dong Geun Shin ◽  
...  

Since mesoporous silica such as MCM-41 and SBA-15 was developed, the study of the properties of high-surface area materials was accelerated. Moreover, the mesoporous silica is used as a template to produce high-surface materials by nanocasting technology. The purpose of this paper is the synthesis of a high surface silicon carbide sphere by the nanocasting technology. In this study, KCC-1 silica sphere was used as a template, and polycarbosilane and poly (phenyl carbosilane) were selected for precursor of silicon carbide. Carbosilane polymer gives advantage of synthesis silicon carbide under low temperature, and hollow spheres were produced. In this study, the polycarbosilane was more effective for the synthesis of SiC hollow spheres by inversion of template structure showing a fibrous morphology on the sphere wall. And it was confirmed that the sphere was composed of nanosized SiC crystals, and has high surface area using TEM, XRD and BET analysis.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 735 ◽  
Author(s):  
Ghulam Hussain ◽  
Anthony O’Mullane ◽  
Debbie Silvester

Electrochemical gas sensors are often used for identifying and quantifying redox-active analyte gases in the atmosphere. However, for amperometric sensors, the current signal is usually dependent on the electroactive surface area, which can become small when using microelectrodes and miniaturized devices. Microarray thin-film electrodes (MATFEs) are commercially available, low-cost devices that give enhanced current densities compared to mm-sized electrodes, but still give low current responses (e.g., less than one nanoamp), when detecting low concentrations of gases. To overcome this, we have modified the surface of the MATFEs by depositing platinum into the recessed holes to create arrays of 3D structures with high surface areas. Dendritic structures have been formed using an additive, lead acetate (Pb(OAc)2) into the plating solution. One-step and two-step depositions were explored, with a total deposition time of 300 s or 420 s. The modified MATFEs were then studied for their behavior towards oxygen reduction in the room temperature ionic liquid (RTIL) [N8,2,2,2][NTf2]. Significantly enhanced currents for oxygen were observed, ranging from 9 to 16 times the current of the unmodified MATFE. The highest sensitivity was obtained using a two-step deposition with a total time of 420 s, and both steps containing Pb(OAc)2. This work shows that commercially-available microelectrodes can be favorably modified to give significantly enhanced analytical performances.


ChemPhysChem ◽  
2008 ◽  
Vol 9 (15) ◽  
pp. 2181-2184 ◽  
Author(s):  
Barbara Schmitz ◽  
Ulrich Müller ◽  
Natalia Trukhan ◽  
Markus Schubert ◽  
Gérard Férey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document