scholarly journals AERODYNAMICS AND HEAT EXCHANGE OF SINGLE END TUBE DURING EXTERNAL FLOW

2021 ◽  
Vol 43 (4) ◽  
pp. 25-33
Author(s):  
A.P. Chyrkova ◽  
A.A. Khalatov ◽  
V.S. Oliynik ◽  
O.V. Shikhabutinova

In Ukraine, the safety of modern thermal power plants depends on the reliable operation of the equipment installed on them. Unfortunately, the technical condition of the chimneys is not properly maintained. Of course, the modernization of basic equipment (boilers, switching to another type of fuel) leads to a decrease in the temperature of the exhaust gases. An important aspect to maintain the condition of the chimneys is to maintain the moisture of the exhaust gases. An important feature of the external flow of chimneys are large Reynolds numbers Re = wd/n, which reach 106 and more. In the thermal calculation only the average heat transfer coefficient on the outer surface of the pipe is usually determined, and the features of aerodynamics and local heat transfer due to the conicity of the pipe are not taken into account. The work is devoted to the study of aerodynamics and heat transfer in the air flow of a single conical chimney. The method of computer modeling with numerical integration of equations of motion and energy was used in the research. At the first stage, the single pipe with the uniform flow profile is considered. Further, the influence of the surrounding infrastructure on the aerodynamics and heat transfer of a single conical tube is studied. The single conical vertical pipe with 40 m height, 1.7 m diameter at the base and 0.85 m in the mouth was used for the calculation. The computer model was calculated in the ANSYS2020-R1 program. The model is developed in a homogeneous area with the air environment. In order to obtain reliable results, the study was conducted to obtain the optimal set of the grid parameters for the heat transfer conditions. The grids with parameters that affect the distance of the first node from the cylinder wall (options a, b, c, d) and the rate of increase in the size of the elements as they move away from the area of interest (Growth rate GR) were studied. The type of the cylindrical pipe with constant diameter of 1.7 m has been chosen to analyze the sensitivity and to check the grid. The turbulence model has been choosen as the following: RNG k-ε model which is common for the tasks of this class, the Enhanced Wall Function, the solution algorithm for the connection of the velocity pressure in stable flows Simplex. It is determined that in case if the distance between the first node from the cylinder wall and the area of interest (Growth rate GR) is more than 8 mm, instability and deviation of the obtained data from the values of the average coefficient of more than 20% appears. As a result of the research, the parameter grid area matching to the “2d” option of table 1 has been selected, i.e.: GR = 1.1, h = 8 mm. In the study of aerodynamics and heat transfer, the conical tube is conventionally divided into 22 sections (with 1 m height each). The case of uniform flow velocity in front of the pipe has been considered. As seen, the maximum value of the heat transfer coefficient is in the Zone(21-22). The research shows that oncoming flow velocity of 25 m/s causes the average value of heat transfer coefficient of the conical pipe 62.5 W/m2K, and 61.1 W/m2K according to the known formula . This indicates a small effect of taper on the average heat transfer of the entire pipe. In the calculations, three types of surrounding areas are considered: A - open coasts of seas, lakes and reservoirs, rural areas, including buildings less than 10 m high; B - urban areas, forests and other areas, evenly covered with obstacles higher than 10 m; C - urban areas with dense buildings with buildings higher than 25 m. Thus, the wind speed profiles for different types of terrain are nonlinear. The wind speed profile in front of the pipe (type of terrain) has a significant effect on the heat transfer coefficient. This confirms the need to take into account the type of terrain and the velocity profile in front of the pipe for local heat transfer.

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1367
Author(s):  
Nino Wolff ◽  
Golo Zimmermann ◽  
Uwe Vroomen ◽  
Andreas Bührig-Polaczek

Local heat transfer in gravity die casting is of great importance for precision in terms of distortion, mechanical properties, and the quality of the castings due to its effect on solidification. Depending on contact conditions such as liquid melt to solid mold, a gap between mold and component, or contact pressure between casting and mold as a result of shrinkage, there are very large differences in heat transfer. The influences of mold material, mold coating and its influence of aging, mold temperature control, and layout on the heat transfer coefficient (HTC) were investigated experimentally for different contact cases. The experiments were carried out on a rotationally symmetrical experimental setup with modular exchangeable die inserts and cores using an AlSi7Mg0.3 alloy. From the results of the individual test series, the quantitative shares of the above-mentioned influencing variables in the respective effective heat transfer coefficients were determined by means of analysis of variance. From this, the parameters having the most significant influence on the local heat balance were derived.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Sebastian Spring ◽  
Diane Lauffer ◽  
Bernhard Weigand ◽  
Matthias Hase

A combined experimental and numerical investigation of the heat transfer characteristics inside an impingement cooled combustor liner heat shield has been conducted. Due to the complexity and irregularity of heat shield configurations, standard correlations for regular impingement fields are insufficient and detailed investigations of local heat transfer enhancement are required. The experiments were carried out in a perspex model of the heat shield using a transient liquid crystal method. Scaling of the model allowed to achieve jet Reynolds numbers of up to Rej=34,000 without compressibility effects. The local air temperature was measured at several positions within the model to account for an exact evaluation of the heat transfer coefficient. Analysis focused on the local heat transfer distribution along the heat shield target plate, side rims, and central bolt recess. The results were compared with values predicted by a standard correlation for a regular impingement array. The comparison exhibited large differences. While local values were up to three times larger than the reference value, the average heat transfer coefficient was approximately 25% lower. This emphasized that standard correlations are not suitable for the design of complex impingement cooling pattern. For thermal optimization the detailed knowledge of the local variation of the heat transfer coefficient is essential. From the present configuration, some concepts for possible optimization were derived. Complementary numerical simulations were carried out using the commercial computational fluid dynamics (CFD) code ANSYS CFX. The motivation was to evaluate whether CFD can be used as an engineering design tool in the optimization of the heat shield configuration. For this, a validation of the numerical results was required, which for the present configuration was achieved by determining the degree of accuracy to which the measured heat transfer rates could be computed. The predictions showed good agreement with the experimental results, both for the local Nusselt number distributions as well as for averaged values. Some overprediction occurred in the stagnation regions, however, the impact on overall heat transfer coefficients was low and average deviations between numerics and experiments were in the order of only 5–20%. The numerical investigation showed that contemporary CFD codes can be used as suitable means in the thermal design process.


2021 ◽  
pp. 171-171
Author(s):  
Leonid Plotnikov

It is a relevant objective in thermal physics and in building reciprocating internal combustion engines (RICE) to obtain new information about the thermal-mechanical characteristics of both stationary and pulsating gas flows in a complex gas-dynamic system. The article discusses the physical features of the gas dynamics and heat transfer of flows along the length of a gas-dynamic system typical for RICE exhaust systems. Both an experimental set-up and experimental techniques are described. An indirect method for determining the local heat transfer coefficient of gas flows in pipelines with a constant temperature hot-wire anemometer is proposed. The regularities of changes in the instantaneous values of the flow rate and the local heat transfer coefficient in time for stationary and pulsating gas flows in different elements of the gas-dynamic system are obtained. The regularities of the change in the turbulence number of stationary and pulsating gas flows along the length of RICE gas-dynamic systems are established (it is shown that the turbulence number for a pulsating gas flow is 1.3-2.1 times higher than for a stationary flow). The regularities of changes in the heat transfer coefficient along the length of the engine?s gas-dynamic system for stationary and pulsating gas flows were identified (it was established that the heat transfer coefficient for a stationary flow is 1.05-1.4 times higher than for a pulsating flow). Empirical equations are obtained to determine the turbulence number and heat transfer coefficient along the length of the gas-dynamic system.


Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Marko Matkovic ◽  
Luisa Rossetto

The first preliminary tests carried on a new experimental rig for measurement of the local heat transfer coefficient inside a circular 0.8 mm diameter minichannel are presented in this paper. The heat transfer coefficient is measured during condensation of R134a and is obtained from the measurement of the heat flux and the direct gauge of the saturation and wall temperatures. The heat flux is derived from the water temperature profile along the channel, in order to get local values for the heat transfer coefficient. The test section has been designed so as to reduce thermal disturbances and experimental uncertainty. A brief insight into the design and the construction of the test rig is reported in the paper. The apparatus has been designed for experimental tests both in condensation and vaporization, in a wide range of operating conditions and for a wide selection of refrigerants.


1962 ◽  
Vol 84 (3) ◽  
pp. 245-250 ◽  
Author(s):  
R. M. Fand ◽  
J. Roos ◽  
P. Cheng ◽  
J. Kaye

In order to achieve a better understanding of the physical mechanism of interaction between free convection and sound, an experimental investigation of the local heat-transfer coefficient around the circumference of a heated horizontal cylinder, both in the presence and absence of a strong stationary sound field, has been carried out. The results show that superposition of intense sound upon the free-convection temperature-velocity field about a heated horizontal cylinder increases the heat-transfer coefficient both on the under and upper portions of the cylinder’s surface. In the presence of a sound field for which SPL = 146 db (re 0.0002 microbar) and f = 1500 cps, the maximum measured increases in the local heat-transfer coefficient on the under and upper portions of a 3/4-in-diam cylinder—relative to the free convection case at the same temperature potential—were found to be approximately 250 and 1200 per cent, respectively. A comparison of these results with earlier flow-visualization studies indicates that the relatively large percentage increase in the heat-transfer coefficient on the upper portion of the cylinder is caused by the oscillating vortex flow which is characteristic of thermoacoustic streaming. The reasons for the increase in the heat-transfer coefficient on the lower portion of the cylinder appear to be: (a) An increase in laminar boundary-layer velocities (steady components) in this region; and (b) modification of the boundary-layer temperature profile due to acoustically induced oscillations (unsteady components) within the laminar boundary layer. The experimental data presented can be used to check the validity of future analytical investigations of thermoacoustic phenomena.


1985 ◽  
Vol 107 (1) ◽  
pp. 105-110 ◽  
Author(s):  
N. Hay ◽  
D. Lampard ◽  
C. L. Saluja

The influence of injection of cooling films through a row of holes on the heat transfer coefficient on a flat plate is investigated for a range of mass flux ratio using a heat-mass transfer analogy. Injection angles of 35 deg and 90 deg are covered. The experimental technique employed uses a swollen polymer surface and laser holographic interferometry. The results presented show the change in local heat transfer coefficient over the no-injection values at the centerline and off-centerline locations for various streamwise stations. The effect of injection on laterally averaged heat transfer coefficients is also assessed.


1971 ◽  
Vol 13 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A. B. Turner

This paper presents an experimental method for determining the variation of the local heat transfer coefficient around gas turbine blades. The method involves the accurate determination of the distribution of metal surface temperature and the heat transfer coefficient and air coolant temperature in the internal cooling passages of the blade. It is shown that from the solution of Laplace's equation and a numerical differentiation at the blade surface of the resulting two-dimensional temperature field an estimate can be made of the normal temperature gradient in the metal which can be related directly to the local heat transfer coefficient at any point of the blade periphery. The results of experiments on a cascade blade undertaken to demonstrate the method are presented. These results show a clear laminar–turbulent transition on the convex surface of the blade but no transition, as such, is indicated on the concave surface. The magnitude of turbulence in the main stream is shown to have a very marked effect both on the mean level of heat transfer to the blade and on the local variation of the heat transfer coefficient.


2012 ◽  
Vol 33 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Tadeusz Bohdal ◽  
Henryk Charun ◽  
Małgorzata Sikora

Abstract The present paper describes the results of experimental investigations of heat transfer during condensation of R134a, R404A and R407C in pipe minichannels with internal diameters 0.31-3.30 mm. The results concern investigations of the local heat transfer coefficient. The results were compared with the correlations proposed by other authors. Within the range of examined parameters of the condensation process in minichannels made of stainless steel, it was established that the values of the heat transfer coefficient may be described with Akers et al., Mikielewicz and Shah correlations within a limited range of the mass flux density of the refrigerant and the minichannel diameter. On the basis of experimental investigations, the authors proposed their own correlation for the calculation of local heat transfer coefficient.


1999 ◽  
Vol 122 (2) ◽  
pp. 240-247 ◽  
Author(s):  
S. C. Arjocu ◽  
J. A. Liburdy

The characteristics of the impinging heat transfer of a three-by-three square array of submerged, elliptic impinging jets was studied. Low Reynolds number conditions, 300 to 1500, are considered for two different elliptic jet aspect ratios, with the impingement distance ranging from 1 to 6 jet hydraulic diameters. A transient thermochromic liquid crystal method was used to map the local heat transfer coefficient distribution. The results are reported for the unit cell under the center jet and detail the mean heat transfer as well as the characteristics of the spatial variation of the heat transfer coefficient. The average heat transfer is found to depend inversely on the elliptic jet aspect ratio at these low Reynolds numbers. Distributions of the heat transfer coefficient, h, are also used to obtain proper orthogonal decompositions of h which are used to identify major spatially distributed features. [S0022-1481(00)02102-2]


Sign in / Sign up

Export Citation Format

Share Document