Transcranial Alternating Current Stimulation for Patients With Mild Alzheimer's Disease (TRANSFORM-AD)

Author(s):  
2021 ◽  
pp. 1-10
Author(s):  
Maeva Dhaynaut ◽  
Giulia Sprugnoli ◽  
Davide Cappon ◽  
Joanna Macone ◽  
Justin S. Sanchez ◽  
...  

Background: Alzheimer’s disease (AD) is characterized by diffuse amyloid-β (Aβ) and phosphorylated Tau (p-Tau) aggregates as well as neuroinflammation. Exogenously-induced 40 Hz gamma oscillations have been showing to reduce Aβ and p-Tau deposition presumably via microglia activation in AD mouse models. Objective: We aimed to translate preclinical data on gamma-induction in AD patients by means of transcranial alternating current stimulation (tACS). Methods: Four participants with mild-to-moderate AD received 1 h of daily 40 Hz (gamma) tACS for 4 weeks (Monday to Friday) targeting the bitemporal lobes (20 h treatment duration). Participant underwent Aβ, p-Tau, and microglia PET imaging with [11C]-PiB, [18F]-FTP, and [11C]-PBR28 respectively, before and after the intervention along with electrophysiological assessment. Results: No adverse events were reported, and an increase in gamma spectral power on EEG was observed after the treatment. [18F]-FTP PET revealed a significant decrease over 2% of p-Tau burden in 3/4 patients following the tACS treatment, primarily involving the temporal lobe regions targeted by tACS and especially mesial regions (e.g., entorhinal cortex). The amount of intracerebral Aβ as measured by [11C]-PiB was not significantly influenced by tACS, whereas 1/4 reported a significant decrease of microglia activation as measured by [11C]-PBR28. Conclusion: tACS seems to represent a safe and feasible option for gamma induction in AD patients, with preliminary evidence of a possible effect on protein clearance partially mimicking what is observed in animal models. Longer interventions and placebo control conditions are needed to fully evaluate the potential for tACS to slow disease progression.


2021 ◽  
Vol 11 (11) ◽  
pp. 1532
Author(s):  
Won-Hyeong Jeong ◽  
Wang-In Kim ◽  
Jin-Won Lee ◽  
Hyeng-Kyu Park ◽  
Min-Keun Song ◽  
...  

Transcranial alternating current stimulation (tACS) is a neuromodulation procedure that is currently studied for the purpose of improving cognitive function in various diseases. A few studies have shown positive effects of tACS in Alzheimer’s disease (AD). However, the mechanism underlying tACS has not been established. The purpose of this study was to investigate the mechanism of tACS in five familial AD mutation (5xFAD) mouse models. We prepared twenty 4-month-old mice and divided them into four groups: wild-type mice without stimulation (WT-NT group), wild-type mice with tACS (WT-T group), 5xFAD mice without stimulation (AD-NT group), and 5xFAD mice with tACS (AD-T group). The protocol implemented was as follows: gamma frequency 200 μA over the bilateral frontal lobe for 20 min over 2 weeks. The following tests were conducted: excitatory postsynaptic potential (EPSP) recording, Western blot analysis (cyclic AMP response element-binding (CREB) proteins, phosphorylated CREB proteins, brain-derived neurotrophic factor, and parvalbumin) to examine the synaptic plasticity. The EPSP was remarkably increased in the AD-T group compared with in the AD-NT group. In the Western blot analysis, the differences among the groups were not significant. Hence, tACS can affect the long-lasting enhancement of synaptic transmission in mice models of AD.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Sign in / Sign up

Export Citation Format

Share Document