Evaluation of 89Zr-DFO-nimotuzumab for Non-invasive Imaging of EGFR+ Cancers by Positron Emission Tomography (PET)

Author(s):  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Martin Thunemann ◽  
Barbara F. Schörg ◽  
Susanne Feil ◽  
Yun Lin ◽  
Jakob Voelkl ◽  
...  

Author(s):  
Ruiqing Ni

Animal models of Alzheimer’s disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research, and have greatly enabled the mechanistic understanding of Alzheimer’s disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models are essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models as well as in patients with Alzheimer’s disease, These tools have facilitated our understanding of disease mechanisms, and provided longitudinal monitoring of treatment effect in animal models of Alzheimer’s disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer’s disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes, and discuss outstanding challenges in disease animal models and future outlook in on-chip characterization of imaging biomarkers towards clinical translation.


2020 ◽  
Vol 93 (1113) ◽  
pp. 20190797 ◽  
Author(s):  
Jacek Kwiecinski ◽  
Piotr J Slomka ◽  
Marc R Dweck ◽  
David E Newby ◽  
Daniel S Berman

Positron emission tomography (PET) with 18F-sodium fluoride (18F-NaF) has emerged as a promising non-invasive imaging modality to identify high-risk and ruptured atherosclerotic plaques. By visualizing microcalcification, 18F-NaF PET holds clinical promise in refining how we evaluate coronary artery disease, shifting our focus from assessing disease burden to atherosclerosis activity. In this review, we provide an overview of studies that have utilized 18F-NaF PET for imaging atherosclerosis. We discuss the associations between traditional coronary artery disease measures (risk factors) and 18F-NaF plaque activity. We also present the data on the histological validation as well as show how 18F-NaF uptake is associated with plaque morphology on intravascular and CT imaging. Finally, we discuss the technical challenges associated with 18F-NaF coronary PET highlighting recent advances in this area.


2019 ◽  
Vol 11 (4) ◽  
pp. 194-200
Author(s):  
Tumenjargal Amartuvshin ◽  
Hirofumi Hanaoka ◽  
Aiko Yamaguchi ◽  
Yoshito Tsushima

Introduction: Non-invasive diagnosis of endometriosis remains challenging. A promising approach for diagnosing endometriosis is the molecular imaging of vascular endothelial growth factor because angiogenesis plays a role in the establishment of endometriosis. This study aimed to evaluate the potential of copper-64-labeled bevacizumab, an anti–vascular endothelial growth factor antibody, for endometriosis imaging. Methods: Mouse endometriosis model was prepared by autologous transplantation. The vascular endothelial growth factor expression was evaluated by immunohistochemical staining. Biodistribution study and positron emission tomography imaging were performed at 1, 24, and 48 h after the injection of radiolabeled bevacizumab. Results: The immunohistochemical staining revealed that vascular endothelial growth factor is expressed around the stroma and glandular epithelial cells in the endometriosis lesion. The biodistribution study showed a high uptake of indium-111 bevacizumab in the endometriosis lesion. Positron emission tomography imaging with copper-64-labeled bevacizumab clearly visualized the endometriosis lesions at 24 and 48 h after injection. Conclusion: These results indicate the potential usefulness of copper-64-labeled bevacizumab for endometriosis imaging.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Mette W. Klinge ◽  
Per Borghammer ◽  
Sten Lund ◽  
Tatyana Fedorova ◽  
Karoline Knudsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document