scholarly journals ESTUDIO DE LA EVOLUCIÓN SUPERFICIAL DE UN BORDE DE GRANO EN HIELO PURO POR PROCESOS EVAPO-DIFUSIVOS

Anales AFA ◽  
2019 ◽  
pp. 10-14
Author(s):  
M. Lado ◽  
D. Stoler ◽  
G. Aguirre Varela ◽  
C.L. Di Prinzio

In this work, we studied the evolution of the groove that forms the grain boundary (BG)when it emerges to a free surface, in the presence of different processes of matter transport. The depth of a groove of the BG was obtained in an ice sample with orientation <1010>/50º at -5 ºC for 3h in dry air, by using a confocal microscope. The experimental results are fitted correctly with a process of transport of matter governed mainly by gaseous diffusion.

Anales AFA ◽  
2021 ◽  
Vol 31 (4) ◽  
pp. 112-116
Author(s):  
C. L. Di Prinzio ◽  
◽  
D. Stoler ◽  
P. I. Achával ◽  
G. Aguirre Varela ◽  
...  

In this work we studied the evolution of the groove that forms the grain boundary (BG) when it emerges to a free surface, in the presence of different processes of matter transport. By using a confocal microscope, the shape of the grain edge groove was obtained in an ice sample with orientation< 1010 >/50◦ at −5◦C ; after keeping it 3 h in an environment with dry air. The shapes and depths of the grain boundary groove obtained experimentally, at regular time periods, were satisfactorily fitted considering a process of transport of matter developed by Srinivasan and Trivedi. In this model the transport of matter is mainly ruled by gaseous diffusion and not by surface diffusion.


Anales AFA ◽  
2021 ◽  
Vol 31 (4) ◽  
pp. 112-116
Author(s):  
C.L. Di Prinzio ◽  
◽  
D. Stoler ◽  
P.I. Achával ◽  
G. Aguirre Varela ◽  
...  

In this work we studied the evolution of the groove that forms the grain boundary (BG) when it emerges to a free surface, in the presence of different processes of matter transport. By using a confocal microscope, the shape of the grain edge groove was obtained in an ice sample with orientation <1010>/50◦at −5◦C ; after keeping it 3 h in an environment with dry air. The shapes and depths of the grain boundary groove obtained experimentally, at regular time periods, were satisfactorily fitted considering a process of transport of matter developed by Srinivasan and Trivedi. In this model the transport of matter is mainly ruled by gaseous diffusion and not by surface diffusion.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


2003 ◽  
Vol 474 ◽  
pp. 275-298 ◽  
Author(s):  
P. D. HOWELL ◽  
C. J. W. BREWARD

The overflowing cylinder (OFC) is an experimental apparatus designed to generate a controlled straining flow at a free surface, whose dynamic properties may then be investigated. Surfactant solution is pumped up slowly through a vertical cylinder. On reaching the top, the liquid forms a flat free surface which expands radially before over flowing down the side of the cylinder. The velocity, surface tension and surfactant concentration on the expanding free surface are measured using a variety of non-invasive techniques.A mathematical model for the OFC has been previously derived by Breward et al. (2001) and shown to give satisfactory agreement with experimental results. However, a puzzling indeterminacy in the model renders it unable to predict one scalar parameter (e.g. the surfactant concentration at the centre of the cylinder), which must be therefore be taken from the experiments.In this paper we analyse the OFC model asymptotically and numerically. We show that solutions typically develop one of two possible singularities. In the first, the surface concentration of surfactant reaches zero a finite distance from the cylinder axis, while the surface velocity tends to infinity there. In the second, the surfactant concentration is exponentially large and a stagnation point forms just inside the rim of the cylinder. We propose a criterion for selecting the free parameter, based on the elimination of both singularities, and show that it leads to good agreement with experimental results.


2009 ◽  
Vol 289-292 ◽  
pp. 385-395 ◽  
Author(s):  
Jerzy Jedlinski

This paper reviews briefly the relationship between the growth mechanism and matter transport using as an example the best currently applied metallic materials being alumina formers. The attention is paid to the experimental approach as well as to the interpretation procedure of experimental results. The scale structure, microstructure, morphology and phase composition are indicated as factors strongly affecting its growth mechanism. The attempt is made to elucidate the possible relationships between the obtained experimental results and actual scale growth mechanisms operating during oxidation exposures.


Author(s):  
Jaekyung Heo ◽  
Jong-Chun Park ◽  
Moo-Hyun Kim ◽  
Weon-Cheol Koo

In this paper, the potential and viscous flows are simulated numerically around a 2-D floating body with a moonpool (or a small gap) with particular emphasis on the piston mode. The floating body with moonpool is forced to heave in time domain. Linear potential code is known to give overestimated free-surface heights inside the moonpool. Therefore, a free-surface lid in the gap or similar treatments are widely employed to suppress the exaggerated phenomenon by potential theory. On the other hand, Navier-Stokes equation solvers based on a FVM can be used to take account of viscosity. Wave height and phase shift inside and outside the moon-pool are computed and compared with experimental results by Faltinsen et al. (2007) over various heaving frequencies. Pressure and vorticity fields are investigated to better understand the mechanism of the sway force induced by the heave motion. Furthermore, a nonlinear potential code is utilized to compare with the viscous flow. The viscosity effects are investigated in more detail by solving Euler equations. It is found that the viscous flow simulations agree very well with the experimental results without any numerical treatment.


1972 ◽  
Vol 31 ◽  
pp. 115-137 ◽  
Author(s):  
G. Hasson ◽  
J.-Y. Boos ◽  
I. Herbeuval ◽  
M. Biscondi ◽  
C. Goux

2004 ◽  
Vol 126 (5) ◽  
pp. 818-826
Author(s):  
Brian J. Daniels ◽  
James A. Liburdy

The oscillatory free-surface displacement in an orifice periodically driven at the inlet is studied. The predictions based on a potential flow analysis are investigated in light of viscous and large curvature effects. Viscous effects near the wall are estimated, as are surface viscous energy loss rates. The curvature effect on the modal frequency is shown to become large at the higher modal surface shapes. Experimental results are obtained using water for two orifice diameters, 794 and 1180 μm. Results of surface shapes and modal frequencies are compared to the predictions. Although modal shapes seem to be well predicted by the theory, the experimental results show a significant shift of the associated modal frequencies. A higher-order approximation of the surface curvature is presented, which shows that the modal frequency should, in fact, be reduced from potential flow predictions as is consistent with the large curvature effect. To account for the effect of finite surface displacements an empirical correlation for the modal frequencies is presented.


Author(s):  
Octavi Sado´ Garriga ◽  
Jeffrey M. Falzarano

The purpose of this paper is to combine and extend existing potential flow theory in order to analyze the linear free surface problem of an Oscillating Water Column (OWC) device and apply it to moonpool design. Analytical results were obtained implementing the previously derived theories, and later compared to experimental results conducted at the University of New Orleans Towing Tank. The model tests consisted of a study of a cylindrical OWC. The theoretical and experimental results of the free surface for the OWC tests agree for the resonant frequency estimation response but they disagree on the amplitude of the response.


Sign in / Sign up

Export Citation Format

Share Document