scholarly journals Validation of an elastomeric bearing characterized with finite element hyperelastic models

Author(s):  
Faisal AHMED ◽  
Fatih ALEMDAR
2013 ◽  
Vol 315 ◽  
pp. 458-462 ◽  
Author(s):  
Mohd Sallehuddin Yusof ◽  
Z. Said ◽  
M.I. Maksud

Line profile is an important consideration in printing functional devices particularly in printing very fine line for electronic applications. Since laser machining provides the opportunity to apply extreme fine lines with different profiles where unachievable mechanically. Laser ablated printing plate are costly to produce, hence it is appropriate to investigate this within a computational framework beforehand. Therefore several designs will be investigated with different geometry as the variables using both linear elastic and non linear hyperelastic models. The results exhibits that finite element analysis serves appropriately as an exploration tool where it worked well with experimental results.


2010 ◽  
Vol 44-47 ◽  
pp. 1487-1491 ◽  
Author(s):  
Bing Xu ◽  
Qin Shu He ◽  
Shao Rong Yu

In this paper, the hyperelastic constitutive theory, the well-know hyperelastic models and the range of uses are introduced. Finite element simulations of the compression tests have been performed with the incompressible Mooney-Rivlin constitutive theory. The choices of parameters in the hyperelastic modeling, the element type, mesh technique and the contact stiffness in the simulation are discussed. The predicted simulation results agree well the experimental data.


2014 ◽  
Vol 709 ◽  
pp. 190-195
Author(s):  
Alexander M. Belostotsky ◽  
Andrei S. Pavlov

This article reviews the experience of modeling and evaluation stability of braced shell with elastomeric bearing under static, seismic and extreme loads.


2019 ◽  
Vol 17 (08) ◽  
pp. 1950049
Author(s):  
Cyprian Suchocki ◽  
Stanisław Jemioło

This work concerns mainly the finite element (FE) implementation of polyconvex incompressible hyperelastic models. A user material subroutine (UMAT) has been developed and can be utilized to define the aforementioned material behaviors in the FE system ABAQUS. The subroutine is written using a novel strategy in order to maximally simplify the relations for the analytical material Jacobian (MJ). The UMAT code is attached in the appendix. The developed subroutine allows to significantly decrease the time of computations and to avoid possible convergence difficulties. The structure of the code enables modifications which may lead to a rheological, damage or growth models, for instance.


2006 ◽  
Vol 79 (5) ◽  
pp. 835-858 ◽  
Author(s):  
G. Marckmann ◽  
E. Verron

Abstract The present paper proposes a thorough comparison of twenty hyperelastic models for rubber-like materials. The ability of these models to reproduce different types of loading conditions is analyzed thanks to two classical sets of experimental data. Both material parameters and the stretch range of validity of each model are determined by an efficient fitting procedure. Then, a ranking of these twenty models is established, highlighting new efficient constitutive equations that could advantageously replace well-known models, which are widely used by engineers for finite element simulation of rubber parts.


Author(s):  
Larry D. Carbary ◽  
Jon H. Kimberlain ◽  
John C. Oliva

Hyperelastic material model parameters have been developed to capture the behavior of silicone based construction sealants. Modern commercially available finite element analysis software makes it quite accessible to develop hyperelastic material models, automating the process of curve-fitting experimental lab data to specific hyperelastic formulations. However, the process of selecting a particular hyperelastic model from those supported is not straightforward. Here, a series of lab experiments are employed to guide the selection of the hyperelastic model that best describes various structural silicone glazings. A total of 10 different sealants are characterized with discussion of variations among the models. Comparisons of the best performing hyperelastic models for the different sealants are presented. Finally, an application is described in which these hyperelastic models have begun to be implemented in practice.


Author(s):  
Oleg V. Mkrtychev ◽  
Artem A. Bunov

Introduction. While designing buildings and constructions with an elastomeric bearing with a lead core as a seismic isolation system, it is necessary to make calculations concerning effectiveness and reasonability of its usage. These demands lead to necessity to construct bearings in a common finite-element model, in order to consider how a bearing and a construction work together. Though a calculator has a lot of different variants of elastomeric bearing’s construction, which are connected to their implemented work model. To prove that obtained calculation results are sufficient and accurate, selection criteria of elastomeric bearings implemented work models are necessary. Materials and methods. To get accurate results we will compare elastomeric bearing’s work diagrams and free periods of motion when there are different variants of their numerical modelling with the help of software packages with factory tests results. Results. The researches have shown that lateral force’s and shear’s limit values are the same for all of the observed cases, although free periods of motion and work diagrams differ. Usage of more accurate bearing work model in software package Ansys/LS-Dyna can explain these differences, it can be seen if compare their work’s diagrams. Conclusions. Analysis of constructions with elastomeric bearings’ work, which function according to the idealized linear model, can be possible only for II level constructions. Idealized nonlinear models should be used for I level constructions.


Author(s):  
Oleg V. Mkrtychev ◽  
Artem A. Bunov

Introduction. While designing buildings and constructions with an elastomeric bearing with a lead core as a seismic isolation system, it is necessary to make calculations concerning effectiveness and reasonability of its usage. These demands lead to necessity to construct bearings in a common finite-element model, in order to consider how a bearing and a construction work together. Though a calculator has a lot of different variants of elastomeric bearing’s construction, which are connected to their implemented work model. To prove that obtained calculation results are sufficient and accurate, selection criteria of elastomeric bearings implemented work models are necessary. Materials and methods. To get accurate results we will compare elastomeric bearing’s work diagrams and free periods of motion when there are different variants of their numerical modelling with the help of software packages with factory tests results. Results. The researches have shown that lateral force’s and shear’s limit values are the same for all of the observed cases, although free periods of motion and work diagrams differ. Usage of more accurate bearing work model in software package Ansys/LS-Dyna can explain these differences, it can be seen if compare their work’s diagrams. Conclusions. Analysis of constructions with elastomeric bearings’ work, which function according to the idealized linear model, can be possible only for II level constructions. Idealized nonlinear models should be used for I level constructions.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document