scholarly journals Studi Pemanfataan Limbah Terak Timah 2 Bangka Sebagai Sumber Sekunder Unsur Skandium

2019 ◽  
Vol 19 (1) ◽  
pp. 7
Author(s):  
Wahyu Kartika ◽  
Rafdi Abdul Majid ◽  
Dovina Navanti

Terak timah (tin slag) adalah sisa dari pengolahan timah yang mengandung radioaktif dan cenderung menjadi limbah karena pemanfaatannya yang belum maksimal. Studi  ini bertujuan untuk memanfaatkan limbah terak timah sebagai sumber sekunder unsur skandium sehingga pemanfaatannya dapat meminimalkan risiko paparan radioaktif terhadap lingkungan. Skandium banyak digunakan  sebagai solid oxide fuel cells (SOFC’s) dapat menyebabkan reaksi  terjadi pada temperatur yang lebih rendah, dalam bidang metalurgi sebagai paduan kekuatan tinggi aluminium, dalam bidang keramik penambahan skandium karbida akan meningkatkan kekerasan,  lampu metal halida dengan intensitas tinggi, elektronik, dan penelitian laser. Penelitian ini menggunakan sampel terak timah 2 Bangka (TTB). Pada tahap awal TTB dipanaskan sampai suhu 900⁰C, lalu dicelupkan ke dalam air, dikeringkan dan di ayak (terak timah 2 Bangka yang dipanaskan, dicelup ke dalam air dan diayak, disebut TTB-PCA). Studi pertama, TTB-PCA yang dilarutkan ke dalam asam florida (disebut kode sampel F) dan studi kedua, TTB-PCA dilarutkan ke dalam HCl kemudian dilarutkan ke dalam NaOH (disebut kode sampel AB). TTB, TTB-PCA, kode sampel F dan AB dilakukan karakterisasi dengan X-Ray Fluorescence (XRF). Hasil karakterisasi memperlihatkan kadar skandium di dalam TTB sebesar 319 ppm dan  kadar skandium tertinggi pada TTB-PCA dengan ukuran butir 200 mesh sebesar 804 ppm. Pada penelitian digunakan software HSC Chemistry 6 sebagai pendukung diskusi termodinamika. Kata Kunci: terak timah  Bangka, software hsc chemistry 6, limbah padat, skandium, pelarutan ABSTRACT - Tin slag is the waste of tin processing that contains radioactive and tends to become waste due to its not maximal utilization. This study aims to utilize waste tin slag as a secondary source of scandium element so that its utilization can minimize the risk of radioactive exposure to the environment. Scandium widely used as solid oxide fuel cells (SOFC's) can cause reactions to occur at lower temperatures, in the field of metallurgy as high-strength aluminum alloys, in the field of ceramic addition of scandium carbide will increase hardness, metal halide lamps with high intensity, electronics, and laser research. This research used Bangka tin slag 2 (TTB), the initial stage of TTB was roasted to 900°C, then water quenched, dried and sieved (TTB roasted, water quenched and sieved, called TTB -PCA). The first study, TTB-PCA dissolved into fluoride acid (called code sample F) and a second study, TTB-PCA dissolved into HCl and then dissolved into NaOH (called AB code sample). TTB, TTB-PCA, sample code F and AB are characterized by X-Ray Fluorescence (XRF). The characterization results show scandium content in TTB of 319 ppm and the highest scandium content in TTB-PCA with grain size of 200 mesh of 804 ppm. In the study used HSC Chemistry 6 software as a supporter of thermodynamic discussion.Keywords: bangka tin slag, hsc chemistry 6 software, solid waste, scandium, dissolution

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4702
Author(s):  
Roberto Spotorno ◽  
Marlena Ostrowska ◽  
Simona Delsante ◽  
Ulf Dahlmann ◽  
Paolo Piccardo

A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380–780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time. In particular, progressive crystallization of the glass-ceramic, high temperature corrosion of the substrate and diffusion of Fe and Cr ions from the FSS substrate into the sealant influence the electrical response of the system under investigation. The electrical measurements show an increase in conductivity to 5 × 10−6 S∙cm−1, more than one order of magnitude below the maximum recommended value.


2019 ◽  
Vol 25 (S2) ◽  
pp. 382-383
Author(s):  
Stephen T. Kelly ◽  
Sandrine Ricote ◽  
Peter Weddle ◽  
Alexis Dubois ◽  
Benjamin Kee ◽  
...  

2015 ◽  
Vol 27 (8) ◽  
pp. 2763-2766 ◽  
Author(s):  
Francesco Giannici ◽  
Giovanna Canu ◽  
Marianna Gambino ◽  
Alessandro Longo ◽  
Murielle Salomé ◽  
...  

2016 ◽  
Vol 28 (11) ◽  
pp. 3727-3733 ◽  
Author(s):  
Sergey Volkov ◽  
Vedran Vonk ◽  
Navid Khorshidi ◽  
Dirk Franz ◽  
Markus Kubicek ◽  
...  

2020 ◽  
Vol 304 ◽  
pp. 67-72
Author(s):  
Hung Ghun Ding ◽  
Wei Sun ◽  
Jing Chie Lin ◽  
Sheng Wei Lee ◽  
Jason Shian Ching Jang ◽  
...  

This work studied on the development of novel cathodes for proton-conductive solid oxide fuel cells (p-SOFCs) made of powders La3Ni2O7+δ (LNO2) mixed with Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF). The cathodes were constructed by a skeleton of LNO2 whose surface coated by BSCF in the ratio (in wt. %) of LNO2/BSCF varying in 15/85, 30/70, 50/50, 75/25 (denote as LN15, LN30, LN50, and LN75, respectively). The skeleton was responsible for carrier conduction and air transportation; the BSCF coating was responsible for catalytic oxygen reduction reaction (ORR). Nascent powders directly collected from combustion were subject to examination by scanning electron microscope (SEM) and X-ray diffractometer (XRD) and further calcination. Well crystalized with highly pure powders obtained post their calcination at 900 °C. Performing the button cells by means of I-V testing at 600, 700 and 800°C, the data of maximum power density () depicted the order LN75 < BSCF < LN15 < LN30< LN50 regardless of temperatures. Among all the specimens, LN50 could be the best cathode candidate for P-SOFCs.


1995 ◽  
Vol 393 ◽  
Author(s):  
Scott Meilicke ◽  
Sossina Haile

ABSTRACTRare-earth, yttrium, and calcium doped zirconates are the materials of choice for electrolytes in solid oxide fuel cells. The dopant in these materials serves not only to stabilized the cubic phase of zirconia, but also to introduce anion defects that presumably increase the ionic conductivity. In order to understand the relationships between anion defect distribution, thermal history and ionic conductivity, the structural properties of gadolinium zirconate, Gd2Zr207, have been examined via high-temperature x-ray powder diffraction. Gadolinium zirconate is an ideal material for such a structure-property-processing study: it shows ordering of defects at low temperatures, taking on a pyrochlore structure, and disordering at elevated temperature, taking on a defect fluorite structure. Diffraction experiments, performed as functions of time and temperature, confirmed the transition temperature to lie between 1500 and 1550 °C. They also revealed that the transformation takes place most rapidly just below the transition temperature, indicating that the ordering process is kinetically constrained at low temperatures. Moreover, x-ray data collected at room temperature from quenched samples were found to be as useful, if not more so, than those collected in situ at high temperature. The latter are affected by thermal scattering, severely compromising data quality.


Sign in / Sign up

Export Citation Format

Share Document