scholarly journals Analysis of High-Cr Cast Iron/Low Carbon Steel Wear-resistant Laminated Composite Plate Prepared by Hot-rolled Symmetrical Billet

2018 ◽  
Vol 117 (1) ◽  
pp. 109-123
Author(s):  
Yanwei Li ◽  
Yugui Li ◽  
Peisheng Han ◽  
Shun Wang ◽  
Zhengyi Jiang ◽  
...  
1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract AISI 1015 is a low-carbon steel used in the annealed, cold-worked, hot-rolled or normalized condition for general purpose construction and engineering. It is also used for case-hardened components. It combines good machinability, good workability and good weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-48. Producer or source: Carbon steel mills.


2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


2021 ◽  
Vol 2021 (3) ◽  
pp. 2-8
Author(s):  
І.О. Ryabtsev ◽  
◽  
V.V. Knysh ◽  
A.A. Babinets ◽  
S.O. Solovej ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document