scholarly journals Modulation of endoplasmic reticulum stress and cardiomyocyte apoptosis by mulberry leaf diet in experimental autoimmune myocarditis rats

2012 ◽  
Vol 50 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Somasundaram Arumugam ◽  
Rajarajan A. Thandavarayan ◽  
Punniyakoti T. Veeraveedu ◽  
Meilei Ma ◽  
Vijayasree V. Giridharan ◽  
...  
2013 ◽  
Vol 31 (6) ◽  
pp. 352-362 ◽  
Author(s):  
Somasundaram Arumugam ◽  
Sayaka Mito ◽  
Rajarajan A. Thandavarayan ◽  
Vijayasree V. Giridharan ◽  
Vigneshwaran Pitchaimani ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1426
Author(s):  
Siqi Li ◽  
Kazuko Tajiri ◽  
Nobuyuki Murakoshi ◽  
DongZhu Xu ◽  
Saori Yonebayashi ◽  
...  

Programmed death ligand 2 (PD-L2) is the second ligand of programmed death 1 (PD-1) protein. In autoimmune myocarditis, the protective roles of PD-1 and its first ligand programmed death ligand 1 (PD-L1) have been well documented; however, the role of PD-L2 remains unknown. In this study, we report that PD-L2 deficiency exacerbates myocardial inflammation in mice with experimental autoimmune myocarditis (EAM). EAM was established in wild-type (WT) and PD-L2-deficient mice by immunization with murine cardiac myosin peptide. We found that PD-L2-deficient mice had more serious inflammatory infiltration in the heart and a significantly higher myocarditis severity score than WT mice. PD-L2-deficient dendritic cells (DCs) enhanced CD4+ T cell proliferation in the presence of T cell receptor and CD28 signaling. These data suggest that PD-L2 on DCs protects against autoreactive CD4+ T cell expansion and severe inflammation in mice with EAM.


2005 ◽  
Vol 11 (9) ◽  
pp. S284
Author(s):  
Hisahito Shinagawa ◽  
Takayuki Inomata ◽  
Hironari Nakano ◽  
Toshimi Koitabashi ◽  
Tsutomu Ohsaka ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kazuko Tajiri ◽  
Kyoko Imanaka-Yoshida ◽  
Michiaki Hiroe ◽  
Nobutake Shimojo ◽  
Satoshi Sakai ◽  
...  

Introduction: Autoimmunity is considered to play an important role in the development of myocarditis and dilated cardiomyopathy. Recent reports have indicated that a subgroup of myocarditis patients may benefit from immune-targeted therapies. Suppressor of cytokine signaling1 (SOCS1) is an intracellular, cytokine-inducible protein that regulates the responses of immune cells to cytokines. We therefore hypothesized that overexpression of SOCS1 may inhibit the inflammation of myocarditis and cardiomyopathy. Methods and Results: Myocarditis was induced by subcutaneous immunization with cardiac specific peptides derived from α-myosin heavy chain in BALB/c mice on days 0 and 7. Plasmid DNA encoding SOCS1 (pSOCS1) was injected intraperitoneally into mice on days 0, 5 and 10. pSOCS1 treatment significantly decreased heart-to-body weight ratios and the number of infiltrating cells in the heart. Echocardiography showed preserved contractile function in pSOCS1-treated mice. Although autoimmune myocarditis is a CD4+ T cell-mediated disease, pSOCS1 treatment does not have a direct suppressive effect on autoreactive T-cell activation. The introduced pSOCS1 suppressed proinflammatory cytokine production and STAT1 phosphorylation in dendritic cells (DCs). In addition, the proliferative responses of autoreactive CD4+ T cells co-cultured with DCs from pSOCS1-treated mice were much weaker than those of cells cultured with DCs from control plasmid-injected mice. These results suggested that the inoculated pSOCS1 may have been transfected into DCs and impaired DC function in vivo. Conclusion: The administration of pSOCS1 protected mice from the development of experimental autoimmune myocarditis, which was mediated by the inhibition of DC function that in turn reduced the activation of autoreactive CD4+ T cells.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Filip Rolski ◽  
Marcin Czepiel ◽  
Kazimierz Weglarczyk ◽  
Maciej Siedlar ◽  
Gabriela Kania ◽  
...  

Background: Inflammatory heart diseases represent an important clinical problem, nonetheless data regarding activation of cardiac microvascular endothelial cells (MVECs) are limited. Aim: To examine influence of TNF-α and exosomes produced by heart-reactive CD4+ T lymphocytes on activation of cardiac MVECs. Methods: Experimental autoimmune myocarditis (EAM) was induced in wild-type (WT) and TNF-α-deficient (TNF-KO) mice. CD4+ T lymphocytes were isolated from EAM mice at day 21 and activated in vitro to produce conditioned medium and exosomes. Activation of MVECs was assessed by specific assays and leukocyte-to-endothelial adhesion was analysed under shear flow condition using the BioFlux microfluidic system. Results: TNF-KO mice showed lower prevalence of myocarditis when compared to WT mice (50% vs. 90%). Stimulation of MVECs with secretome of antigen-activated autoreactive T cells resulted in upregulation of adhesion molecules (ICAM-1, VCAM-1 and P-selectin), increased ROS and decreased NO production. Addition of anti-TNF-α neutralizing antibodies effectively blocked adhesion of leukocytes to MVECs activated with the conditioned medium. Endothelial activation and dysfunction induced by the conditioned medium were independent of TNF-α produced by T cells. Stimulation of MVECs with T cell-derived exosomes increased ROS and decreased levels of NO and eNOS activation, but exosomes neither increased expression of adhesion molecules in MVECs nor induced their ability to bind leukocytes. Conclusions: TNF-α promotes MVEC activation and EAM development. In this model, autoreactive T cells activate MVECs, and TNF-a produced by MVECs rather than T cells is essential in this process. On the other hand, endothelial dysfunction caused by T cells seems to be mediated mainly by exosomes.


Sign in / Sign up

Export Citation Format

Share Document