scholarly journals LOAD-BEARING CAPACITY REGION ANALYSIS OF THIN-WALLED STRUCTURAL MEMBERS FROM COLD-FORMED PROFILES

Author(s):  
А.V. Perelmuter ◽  
◽  
V.V. Yurchenko ◽  
2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2019 ◽  
Vol 25 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Antanas Šapalas ◽  
Gintas Šaučiuvėnas ◽  
Konstantin Rasiulis ◽  
Mečislovas Griškevičius ◽  
Tomas Gečys

Design of modern thin-walled metal structures is widely used around the world. In recent decades, more comprehensive research is carried out to investigate the behaviour of various thin-walled structures. Generally, the structure with regular geometry is investigated. In various countries such as USA, Russia, and the European Union issued the standards on regulation of the construction, design and maintenance of thin-walled structures. The actually used period of tanks usually is longer than recommendatory period. Recommendatory maintenance period of metal tanks is 15–20 years. Therefore, for such structures one of the most considerable questions is the residual load bearing capacity beyond the end of the maintenance period. This phase of using of structures is associated with complex investigation and numerical analysis of thin-walled structures. In this paper the load bearing capacity of the steel wall of the existing over-ground vertical cylindrical tank in volume of 5,000 m3 with a single defect and with a few contiguous local defects of the shape is analyzed. Calculations carried out are taking into account all the imperfections of the wall geometry. A major goal of the research – developing a realistic numerical model of the object analyzed, taking into account all the imperfections, determining the wall stress and strain state, exploring the places of extreme points, calculating the residual load bearing capacity of the tank and scrutinizing possible strengthening schemes for defective areas.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 795 ◽  
Author(s):  
Fengjie Zhang ◽  
Junwu Xia ◽  
Guo Li ◽  
Zhen Guo ◽  
Hongfei Chang ◽  
...  

This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column specimens were subjected to an accelerated corrosion test, where the steel tubes were corroded to different degrees of corrosion. Then, these CFST specimens with corroded steel tubes experienced an axial static loading test. Results show that the failure patterns of circular thin-walled CFST stub columns with corroded steel tubes are different from those of the counterpart CFST columns with ordinary wall-thickness steel tubes, which is a typical failure mode of shear bulging with slight local outward buckling. The ultimate strength and plastic deformation capacity of the CFST specimens decreased with the increasing degree of steel corrosion. The failure modes of the specimens still belonged to ductile failure because of the confinement of outer steel tube. The degree of steel tube corrosion, diameter-to-thickness ratio, and confinement coefficient had substantial influences on the AULC and the ultimate compressive strength of circular thin-walled CFST stub columns. A simple AULC prediction model for corroded circular thin-walled CFST stub columns was presented through the regression of the experimental data and parameter analysis.


Author(s):  
D. A. Prostakishina ◽  
◽  
N. D. Korsun ◽  

The article describes the process of numerical simulation of a composite symmetric section element made of thin-walled Sigma profiles operating under conditions of longitudinal compressive force with bending, taking into account the initial geometric imperfections. At numerical modeling, the main criterion of the load-bearing capacity exhaustion in case of eccentric compression is the stability loss in one of the forms. However, for thin-walled elements, the loss of local stability does not mean that the load-bearing capacity is completely exhausted, since the element continues to carry the load, but to a lesser extent. Therefore, simulation was carried out in two stages: initially, in the elastic formulation, the possible buckling modes were determined, afterwards, there was made calculation on the deformed pattern taking into account possible imperfections.


Author(s):  
А.V. Perelmuter ◽  
◽  
V.V. Yurchenko ◽  

Abstract. The main purpose of the research was a deep analysis and verification of the consistency and completeness of the design code relating to calculation of load-bearing structural members made from cold-formed profiles. The work has been done in close connection with the implementation on the territory of Ukraine of this design code. The article has discussed and investigated the load-bearing capacity of structural members made of cold-formed profiles subjected to the action of central compression. A system of constraints has been presented, in which the strength and buckling constraints for thin-walled cold-formed column members are formulated, taking into account their possible post-buckling behavior, namely, the ability to resist external loads and effects even after the occurrence of the local buckling and/or distortional buckling phenomenon. The performed load-bearing capacity investigation has shown that for the mono-symmetric cold-formed profiles, the flexural-torsional buckling is determinative. For such cold-formed profiles, the effect of the overall dimensions ratio (flange width to web height) on the load-bearing capacity of cold-formed profiles has been estimated. It has been shown that for the same cross-sectional area the load-bearing capacity of a column structural member made from cold-formed profile and subjected to axial compression can be significantly increased by assigning an optimal ratio of flange width to web height. The paper also has presented the results of the load-bearing capacities for the structural cold-formed members subjected to central compression, calculated according to the design standard DSTU-N B EN 1993-1-3: 2012 and according to the design code DBN V.2.6-198: 2014. It has been shown that in some cases the difference in the assessment of the load-bearing capacity for such structural cold-formed members reached 25%. A comparison of the load-bearing capacities for the action of the central compression has been made for structural cold-formed members made from a C-shaped profile and with a composite section of two C-shaped profiles. It has been shown that the load-bearing capacity of the structural cold-formed member of the composite section exceeds the load-bearing capacity of the member with single C-shaped profile by more than 3 times, while cross-section areas of these structural members differ only doubly.


2014 ◽  
Vol 20 (3) ◽  
pp. 372-379 ◽  
Author(s):  
Ryszard Antonowicz ◽  
Czesław Bywalski ◽  
Mieczysław Kaminski

This paper deals with problems connected with the design and operation of thin-walled steel silos for storing pelleted materials. A failure of a faultily designed silo is described and its causes are examined. The parameters of the stored material were determined. The exceptional (unforeseen) loads produced by arching and their consequences were analysed. In order to compare the effect of calculation assumptions on the degree of use of the load-bearing capacity of the stringer its buckling capacity under the stored material load alone was checked. On the basis of the analyses the probable course of the events leading to the failure was determined. It is pointed out that the exceptional loads and the disturbance of the bulk material flow by silo structural and technological fittings need to be taken into account in the design of silos.


2018 ◽  
Vol 196 ◽  
pp. 01008 ◽  
Author(s):  
Vadim Alpatov ◽  
Alexey Soloviev

There is a tendency to reduce weight of load-bearing metal structures being developed and successfully realized in modern building construction. This idea serves as a basis for a whole scientific direction, named Development and application of light steel thin-walled structures (LSTS). Among them, LTST built with pop-rivets and thread-cutting screws are most widespread due to their simplicity and relative cheapness This paper presents numerical studies of LSTS joint assembly units built with screws and their load bearing capacity. The peculiarity of these units consists in misalignment of joint elements. The calculation was performed in the SolidWorks Simulation System. The modeled node is a three-dimensional assembly consisting of solid components. The results of the study are as follows: 1) thin-walled profiles have a significant sensitivity to eccentricity; 2) it is unacceptable to disregard eccentricities for thin-walled profiles and their joint connections; 3) eccentricities should be compensated by measures to improve reliability in joint connections design.


Sign in / Sign up

Export Citation Format

Share Document