scholarly journals Dental Pulp Stem Cells Transplantation Improves Passive Avoidance Memory and Neuroinflammation in Trimethyltin-Induced Alzheimer’s Disease Rat Model

2021 ◽  
Vol 10 ◽  
pp. e2254
Author(s):  
Samira Malekzadeh ◽  
Mohammad Amin Edalatmanesh ◽  
Davood Mehrabani ◽  
Mehrdad Shariati

Background: According to the increasing incidence of Alzheimer’s disease (AD), this study aimed to investigate the effect of dental pulp stem cells (DPSCs) transplantation on passive avoidance memory and neuroinflammation in trimethyltin (TMT)-induced AD rat model. Materials and Methods: In this experimental study, 18 male Wistar rats were randomly divided into three groups: the control that rats received 8 mg/kg TMT plus 0.5 ml phosphate buffered saline (PBS) and TMT+DPSCs (TMT + 1×106 cells/ml DPSC in 0.5 ml PBS) groups. Then, after one month, passive avoidance test was performed. Also measured the Nuclear Factor Kappa-β (NF-Kβ) serum level and the percentage of damaged neurons in the hippocampus were determined. Results: DPSCs transplantation showed significantly increased step-through latency to the dark compartment in comparison with control and TMT+PBS groups in 24 hours after shock. Also, time spent in the dark compartment of TMT+DPSCs significantly decreased compared to control and TMT+PBS groups in 24 and 48 hours after shock (P<0.05). Furthermore, DPSCs transplantation significantly decreased the NF-Kβ serum level and percentage of damaged pyramidal neurons of CA1 compared with TMT+PBS (P<0.05). Conclusion: DPSCs transplantation improved memory and learning, regulated NF-Kβ serum level, and decreased damage neurons of CA1 hippocampus in TMT-induced AD rat model.

2022 ◽  
Vol 8 (1) ◽  
pp. 7-16
Author(s):  
Adeleh Jafari ◽  
◽  
Parvin Babaei ◽  
Kambiz Rohampour ◽  
Samira Rashtiani ◽  
...  

Background: Numerous pieces of evidence support that oxidative stress is a key factor in the pathogenesis of neurodegenerative diseases, like Alzheimer’s Disease (AD). Suppression of oxidative stress is an attractive strategy and flavonoids as potent natural antioxidants are extremely noticeable. Objectives: In this study, the effects of Kaempferol (KMP) were evaluated on passive avoidance memory, hippocampal Nrf-2, and beclin-1 expression in a rat model of Aβ1-42 –induced AD. Materials & Methods: Forty male Wistar rats weighing 200-250 g were divided into five groups (n=8); sham-operated, AD model, and KMP treatment (5, 7.5, 10 mg/kg, i.p. for three weeks). Animals received an intracerebroventricular injection of amyloid-beta (1-42) to establish an AD model. Passive avoidance memory of rats was evaluated using a shuttle box on day 21; Step-Through Latency (STL) and time spent in The Dark Compartment (TDC) were recorded. Then, hippocampus homogenates were used for biochemical and molecular analysis by real-time PCR, western blot, and ELISA. Results: It was found that KMP improved memory evidenced by increased STL (P≤0.05) and decreased TDC (p≤0.01). KMP also increased the levels of Total Antioxidant Capacity (TAC) in the hippocampus of rats (P≤0.05). In addition, KMP enhanced the expression of Nrf-2 mRNA (P≤0.001) and beclin-1 protein in the hippocampus tissues (P≤0.001). Conclusion: Overall, it is suggested that the memory-improving effect of KMP is mediated, at least in part, by enhancing Nrf-2 and TAC. KMP is also able to induce autophagy through the expression of beclin-1.


2017 ◽  
Vol 41 (6) ◽  
pp. 639-650 ◽  
Author(s):  
Feixiang Wang ◽  
Yali Jia ◽  
Jiajing Liu ◽  
Jinglei Zhai ◽  
Ning Cao ◽  
...  

2021 ◽  
Author(s):  
Mohamed Hosney ◽  
Alaa Sakraan ◽  
Aman Asaad ◽  
Mervat El-Deftar ◽  
Emad Elzayat

Abstract Alzheimer's disease (AD) is the most prevalent type of dementia characterized by its progression, neurobehavioral and neuro-pathological characteristics, leading to a diverse neuronal loss. Adipose-derived mesenchymal stem cells (ADMSCs) have previously proved potential role in preventing the pathogenesis of several neurodegenerative disorders, so regarded as a promising new approach for AD regenerative therapy. Taurine was found to enhance stem cell activation and propagation yielding a higher concentration of neural progenitors and stem cells, and aid to lessen the number of activated microglia leading to down-regulated inflammation in vitro. The present study aimed to investigate the possible therapeutic potential of ADMSCs and/or taurine in treating AD rat model. It was planned to include three successive phases; induction, withdrawal, and therapeutic phases. Fifty male Wistar rats were divided into 2 main groups: control (C) group and AD model group. Behavioral changes, as manifested by the T-Maze experiment, had been recorded. β-amyloid levels had been measured in brain homogenate and serum by ELISA. Oxidative stress marker (MDA), and anti-oxidant enzymes activity (SOD, GSH, and CAT) in brain, as well as serum acetylcholine esterase activity were spectrophotometrically determined. Pro-apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) gene expression in brain were evaluated using RT-qPCR. The histopathological alterations in brain tissues were also observed. The present study proved the potential therapeutic ability of ADMSCs and/or taurine in alleviating the adverse pathological changes induced by AlCl3 in AD rat model at both physiological and molecular levels.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S478
Author(s):  
Maria Florencia Zappa Villar ◽  
Juliette Lopez Hanotte ◽  
Joaquin Pardo ◽  
Gustavo Ramon Morel ◽  
Mariana Gabriela Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document