scholarly journals Numerical thermal performance of free convection in metal foam heat sinks with fin edges

Author(s):  
Aqeel Mtasher Uglah ◽  
Abbas J. Jubear
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
S. S. Feng ◽  
J. J. Kuang ◽  
T. J. Lu ◽  
K. Ichimiya

A numerical investigation was carried out to characterize the thermal performance of finned metal foam heat sinks subject to an impinging air flow. The main objective of the study was to quantify the effects of all relevant configurational parameters (channel length, channel width, fin thickness, and fin height) of the heat sink upon the thermal performance. Open-cell aluminum foam having fixed porosity of 0.9118 and fixed pore density of five pores per inch (PPI) was used in the study. A previously validated model based on the porous medium approach was employed for the numerical simulation. Various simulation cases for different combinations of channel parameters were carried out to obtain the Nusselt number correlation. Based on the inviscid impinging flow, a pressure drop correlation was derived for impinging flow in finned metal foam heat sinks. By using these correlations, the thermal performance of finned metal foam heat sinks was compared with the conventional plate-fin heat sinks. It was demonstrated that the finned metal foam heat sinks outperformed the plate-fin heat sinks on the basis of given weight or given pumping power.


Author(s):  
Han Shen ◽  
Xueting Liu ◽  
Hongbin Yan ◽  
Gongnan Xie ◽  
Bengt Sunden

Internal Y-shaped bifurcation has been proved to be an advantageous way on improving thermal performance of microchannel heat sinks according to the previous research. Metal foams are known due to their predominate performance such as low-density, large surface area, and high thermal conductivity. In this paper, different parameters of metal foams in Y-shaped bifurcation microchannel heat sinks are designed and investigated numerically. The effects of Reynolds number, porosity of metal foam, and the pore density (PPI) of the metal foam on the microchannel heat sinks are analyzed in detail. It is found that the internal Y-shaped bifurcation microchannel heat sinks with metal foam exhibit better heat transfer enhancement and overall thermal performance. This research provides broad application prospects for heat sinks with metal foam in the thermal management of high power density electronic devices.


2009 ◽  
Vol 419-420 ◽  
pp. 345-348
Author(s):  
Rong Yuan Jou

For applications of high-power LED illumination and advanced CPU electronic cooling, since the traditional plate heat sinks by aluminum extrusion are simple geometry only and with limited thermal performance, a new design and new fabrication process of heat sink for high-density heat flux applications is inevitable. In this study, a heat sink fabricated by vacuum die-casting is analyzed. To evaluate the thermal performance of this heat sink, two experiments, free convection measurements in an enclosure and forced convection measurements in a wind tunnel, are conducted by two experimental methods of thermocouples and IR thermograph. As to free convection experiments, compared to the free convection over a plate, temperature decrement by the attached casting of pin-fin heat sink is 46.2% for the input power of 10W. In the case of 15W heating power, temperature distribution along center pin shows uniformly distributed temperature along length direction, but there is a temperature difference of 9.5°C,varied from 86.9°C to 77.4°C, at outer pin. As to the case of 10W heating power, there is a temperature difference of 6.5°C, varied from 69.2.9°C to 62.6°C, at the outer pin. Furthermore, forced convection experiments show that resistances of heat-sink casting are decreased when Reynolds numbers are increased, and a linear relationship between pressure drop and Reynolds number is noticed. Base on the measurement results, this heat sink casting can be a feasible thermal solution of LED and high-power chip products.


2013 ◽  
Vol 37 (3) ◽  
pp. 841-850 ◽  
Author(s):  
Tzer-Ming Jeng ◽  
Sheng-Chung Tzeng ◽  
Zhi-Ting Yeh

This study experimentally investigated the free convection heat transfer characteristics of the annular metal-foam heat sinks. The results showed that the heat transfer coefficient (h) decreased as the pore density of metal foams increased when the thickness (tc) of the annular metal foams equaled 5 mm, but the (h) increased as the pore density increased when tc = 11 and 14.5 mm. Besides, the (h) increased firstly and then decreased as (tc) increased. There was better heat transfer effect when tc = 11 mm in the present study.


Author(s):  
Han Shen ◽  
Xueting Liu ◽  
Bengt Sunden ◽  
Gongnan Xie

Internal Y-shaped bifurcation has been proved to be an advantageous way on improving thermal performance of microchannel heat sinks according to the previous research. Metal foams are known due to their predominate performance such as low-density, large surface area and high thermal conductivity. In this paper, different parameters of metal foams in Y-shaped bifurcation microchannel heat sinks are designed and investigated numerically. The effects of Reynolds number, porosity of metal foam, and the pore density (PPI) of the metal foam on the microchannel heat sinks are analyzed in detail. It is found that the internal Y-shaped bifurcation microchannel heat sinks with metal foam exhibit better heat transfer enhancement and overall thermal performance. This research provides broad application prospects for heat sinks with metal foam in the thermal management of high power density electronic devices.


Author(s):  
Bruno de Campos Salles Anselmo ◽  
Sandro Metrevelle Marcondes de Lima e Silva

Sign in / Sign up

Export Citation Format

Share Document