Convective Heat Transfer Measurements of Die-Casting Heat Sinks

2009 ◽  
Vol 419-420 ◽  
pp. 345-348
Author(s):  
Rong Yuan Jou

For applications of high-power LED illumination and advanced CPU electronic cooling, since the traditional plate heat sinks by aluminum extrusion are simple geometry only and with limited thermal performance, a new design and new fabrication process of heat sink for high-density heat flux applications is inevitable. In this study, a heat sink fabricated by vacuum die-casting is analyzed. To evaluate the thermal performance of this heat sink, two experiments, free convection measurements in an enclosure and forced convection measurements in a wind tunnel, are conducted by two experimental methods of thermocouples and IR thermograph. As to free convection experiments, compared to the free convection over a plate, temperature decrement by the attached casting of pin-fin heat sink is 46.2% for the input power of 10W. In the case of 15W heating power, temperature distribution along center pin shows uniformly distributed temperature along length direction, but there is a temperature difference of 9.5°C,varied from 86.9°C to 77.4°C, at outer pin. As to the case of 10W heating power, there is a temperature difference of 6.5°C, varied from 69.2.9°C to 62.6°C, at the outer pin. Furthermore, forced convection experiments show that resistances of heat-sink casting are decreased when Reynolds numbers are increased, and a linear relationship between pressure drop and Reynolds number is noticed. Base on the measurement results, this heat sink casting can be a feasible thermal solution of LED and high-power chip products.

Author(s):  
Saeed Ghalambor ◽  
John Edward Fernandes ◽  
Dereje Agonafer ◽  
Veerendra Mulay

Forced convection air cooling using heat sinks is one of the most prevalent methods in thermal management of microelectronic devices. Improving the performance of such a solution may involve minimizing the external thermal resistance (Rext) of the package. For a given heat sink design, this can be achieved by reducing the thermal interface material (TIM) thickness through promotion of a uniform interfacial pressure distribution between the device and heat sink. In this study, a dual-CPU rackmount server is considered and modifications to the heat sink assembly such as backplate thickness and bolting configuration are investigated to achieve the aforementioned improvements. A full-scale, simplified model of the motherboard is deployed in ANSYS Mechanical, with emphasis on non-linear contact analysis and torque analysis of spring screws, to determine the optimal design of the heat sink assembly. It is observed that improved interfacial contact and pressure distribution is achieved by increasing the number of screws (loading points) and positioning them as close to the contact area as possible. The numerical model is validated by comparison with experimental measurements within reasonable accuracy. Based on the results of numerical analysis, the heat sink assembly is modified and improvement over the base configuration is experimentally quantified through interfacial pressure measurement. The effect of improved interfacial contact on thermal performance of the solution is discussed.


Author(s):  
Zhigang Gao ◽  
Tianhu Wang ◽  
Yuxin Yang ◽  
Xiaolong Shang ◽  
Junhua Bai ◽  
...  

Abstract The issue of regenerative cooling is one of the most important key technologies of flight vehicles, which is applied into both the engine and high-power electrical equipment. One pattern of regenerative cooling channels is the microchannel heat sinks, which are thought as a prospective means of improving heat removal capacities on electrical equipment of smaller sizes. In this paper, three numerical models with different geometric configurations, namely straight, zigzag, and sinusoid respectively, are built to probe into the thermal hydraulic performance while heat transfer mechanism of supercritical methane in microchannel heat sinks for the heat removal of high-power electromechanical actuator is also explored. In addition, some crucial influence factors on heat transfer such as inlet Reynolds number, operating pressure and heating power are investigated. The calculation results imply the positive effect of wavy configurations on heat transfer and confirm the important effect of buoyancy force of supercritical methane in channels. The heat sinks with wavy channel show obvious advantages on comprehensive thermal performance including overall thermal performance parameter ? and thermal resistance R compared with that of the straight one. The highest Nu and average heat transfer coefficient am appear in the heat sink with zigzag channels, but the pumping power of the heat sink with sinusoidal channels is lower due to the smaller flow loss.


2014 ◽  
Vol 602-605 ◽  
pp. 2713-2716 ◽  
Author(s):  
Xin Rui Ding ◽  
Yu Ji Li ◽  
Zong Tao Li ◽  
Yong Tang ◽  
Bin Hai Yu ◽  
...  

LED has been regarded as the next generation lighting source. As for high power LED lamps, heat accumulation will cause a series of problems. Therefore, thermal management is very important for designing a high power LED lamp. Three types of heat sinks are designed by using the finite element analysis (FEA) method for an 180W high power LED lamp. Then the optimized heat sinks are developed and experiments are performed to demonstrate the simulated results. At the same time, the thermal performances with different working angles are investigated experimentally. The heat sink with heat pipe has a better heat dissipation performance than the conventional heat sink under the same input power. The working angles of the lamps greatly influence the thermal performance of each heat sink. For the same heat sink, the temperature varies with different install directions and working angles. Finally, the heat sink with the best thermal performance is recommended. The results have practical significance in designing high power LED lamps.


1994 ◽  
Vol 116 (3) ◽  
pp. 206-211 ◽  
Author(s):  
R. A. Wirtz ◽  
Weiming Chen ◽  
Ronghua Zhou

Heat transfer experiments are reported on the thermal performance of longitudinal fin heat sinks attached to an electronic package which is part of a regular array of packages undergoing forced convection air cooling. The effect of coolant bypass on the performance of the heat sink is assessed and performance correlations for reduced heat transfer due to this effect are developed. These correlations are used to develop design guidelines for optimal performance.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 556 ◽  
Author(s):  
Piotr Marek Markowski ◽  
Mirosław Gierczak ◽  
Andrzej Dziedzic

This paper has three main purposes. The first is to investigate whether it is appropriate to use a planar thick-film thermoelectric sensor to monitor the temperature difference in a processor heat sink. The second is to compare the efficiency of two heat sink models. The third is to compare two kinds of sensors, differing in length. The model of the CPU heat sink sensor system was designed for numerical simulations. The relations between the CPU, heat sink, and the thermoelectric sensor were modelled because they are important for increasing the efficiency of fast processors without interfering with their internal structure. The heat sink was mounted on the top of the thermal model of a CPU (9.6 W). The plate fin and pin fin heat sinks were investigated. Two planar thermoelectric sensors were mounted parallel to the heat sink fins. These sensors monitored changes in the temperature difference between the CPU and the upper surface of the heat sink. The system was equipped with a cooling fan. Switching on the fan changed the thermal conditions (free or forced convection). The simulation results showed the temperature gradient appearing along the sensor for different heat sinks and under different thermal conditions. Comparison of the results obtained in the simulations of the CPU heat sink sensor systems proves that changes in the cooling conditions can cause a strong, step change in the response of the thermoelectric sensor. The results suggest that usage of the pin fin heat sink model is a better solution for free convection conditions. In the case of strong forced convection the heat sink type ceases to be significant.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


Author(s):  
Sangmesh ◽  
◽  
Gopalakrishna Keshava Narayana ◽  
Manjunath Shiraganhalli Honnaiah ◽  
Krishna Venkatesh ◽  
...  

Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


Sign in / Sign up

Export Citation Format

Share Document