scholarly journals Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier

2019 ◽  
Vol 102 (2) ◽  
pp. 929-942 ◽  
Author(s):  
Carlotta Giromini ◽  
Federica Cheli ◽  
Raffaella Rebucci ◽  
Antonella Baldi
Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 127
Author(s):  
Xing-Wei Xiang ◽  
Xiao-Ling Zhou ◽  
Rui Wang ◽  
Cong-Han Shu ◽  
Yu-Fang Zhou ◽  
...  

Bioactive peptides isolated from marine organisms have shown to have potential anti-inflammatory effects. This study aimed to investigate the intestinal protection effect of low molecular peptides (Mw < 1 kDa) produced through enzymatic hydrolysis of tuna processing waste (tuna bioactive peptides (TBP)) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Here, we randomly divided twenty-four male BALB/c mice into four groups: (i) normal (untreated), (ii) DSS-induced model colitis, (iii) low dose TBP+DSS-treated (200 mg/kg/d), and (iv) high dose TBP+DSS-treated groups (500 mg/kg/d). The results showed that TBP significantly reduced mice weight loss and improved morphological and pathological characteristics of colon tissues. In addition, it increased the activities of antioxidant enzymes (SOD and GSH-Px) and decreased inflammatory factors (LPS, IL-6, and TNF-α) expression. TBP increased the gene expression levels of some tight junction (TJ) proteins. Moreover, TBP increased the short-chain fatty acids (SCFAs) levels and the diversity and imbalance of intestinal flora. Therefore, TBP plays some protective roles in the intestinal tract by enhancing antioxidant and anti-inflammatory abilities of the body, improving the intestinal barrier and metabolic abnormalities, and adjusting intestinal flora imbalance.


2014 ◽  
Vol 15 (12) ◽  
pp. 22857-22873 ◽  
Author(s):  
Olga Martínez-Augustin ◽  
Belén Rivero-Gutiérrez ◽  
Cristina Mascaraque ◽  
Fermín Sánchez de Medina

Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1259 ◽  
Author(s):  
Leticia Mora ◽  
Marta Gallego ◽  
Fidel Toldrá

Meat and meat products have been described as a very good source of angiotensin I converting enzyme (ACEI)-inhibitory peptides. The generation of bioactive peptides can occur through the action of endogenous muscular enzymes during processing, gastrointestinal digestion, or by using commercial enzymes in laboratory or industry under controlled conditions. Studies of bioavailability are necessary in order to prove the positive health effect of bioactive peptides in the body as they should resist gastrointestinal digestion, cross the intestinal barrier, and reach blood stream and target organs. However, in order to better understand their effect, interactions, and bioavailability, it is necessary to consider food matrix interactions and continue the development of quantitative methodologies in order to obtain more data that will enable advances in the field of bioactive peptides and the determination of their influence on health.


2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


Sign in / Sign up

Export Citation Format

Share Document