Genomic evaluation of dairy heifer livability

Author(s):  
M. Neupane ◽  
J.L. Hutchison ◽  
C.P. Van Tassell ◽  
P.M. VanRaden
2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 81-82
Author(s):  
Joaquim Casellas ◽  
Melani Martín de Hijas-Villalba ◽  
Marta Vázquez-Gómez ◽  
Samir Id Lahoucine

Abstract Current European regulations for autochthonous livestock breeds put a special emphasis on pedigree completeness, which requires laboratory paternity testing by genetic markers in most cases. This entails significant economic expenditure for breed societies and precludes other investments in breeding programs, such as genomic evaluation. Within this context, we developed paternity testing through low-coverage whole-genome data in order to reuse these data for genomic evaluation at no cost. Simulations relied on diploid genomes composed by 30 chromosomes (100 cM each) with 3,000,000 SNP per chromosome. Each population evolved during 1,000 non-overlapping generations with effective size 100, mutation rate 10–4, and recombination by Kosambi’s function. Only those populations with 1,000,000 ± 10% polymorphic SNP per chromosome in generation 1,000 were retained for further analyses, and expanded to the required number of parents and offspring. Individuals were sequenced at 0.01, 0.05, 0.1, 0.5 and 1X depth, with 100, 500, 1,000 or 10,000 base-pair reads and by assuming a random sequencing error rate per SNP between 10–2 and 10–5. Assuming known allele frequencies in the population and sequencing error rate, 0.05X depth sufficed to corroborate the true father (85,0%) and to discard other candidates (96,3%). Those percentages increased up to 99,6% and 99,9% with 0,1X depth, respectively (read length = 10,000 bp; smaller read lengths slightly improved the results because they increase the number of sequenced SNP). Results were highly sensitive to biases in allele frequencies and robust to inaccuracies regarding sequencing error rate. Low-coverage whole-genome sequencing data could be subsequently integrated into genomic BLUP equations by appropriately constructing the genomic relationship matrix. This approach increased the correlation between simulated and predicted breeding values by 1.21% (h2 = 0.25; 100 parents and 900 offspring; 0.1X depth by 10,000 bp reads). Although small, this increase opens the door to genomic evaluation in local livestock breeds.


2015 ◽  
Vol 3 (5) ◽  
pp. 433-439 ◽  
Author(s):  
Nir Pillar ◽  
Ofer Isakov ◽  
Daphna Weissglas‐Volkov ◽  
Shay Botchan ◽  
Eitan Friedman ◽  
...  

2012 ◽  
Vol 52 (3) ◽  
pp. 115 ◽  
Author(s):  
D. Boichard ◽  
F. Guillaume ◽  
A. Baur ◽  
P. Croiseau ◽  
M. N. Rossignol ◽  
...  

Genomic selection is implemented in French Holstein, Montbéliarde, and Normande breeds (70%, 16% and 12% of French dairy cows). A characteristic of the model for genomic evaluation is the use of haplotypes instead of single-nucleotide polymorphisms (SNPs), so as to maximise linkage disequilibrium between markers and quantitative trait loci (QTLs). For each trait, a QTL-BLUP model (i.e. a best linear unbiased prediction model including QTL random effects) includes 300–700 trait-dependent chromosomal regions selected either by linkage disequilibrium and linkage analysis or by elastic net. This model requires an important effort to phase genotypes, detect QTLs, select SNPs, but was found to be the most efficient one among all tested ones. QTLs are defined within breed and many of them were found to be breed specific. Reference populations include 1800 and 1400 bulls in Montbéliarde and Normande breeds. In Holstein, the very large reference population of 18 300 bulls originates from the EuroGenomics consortium. Since 2008, ~65 000 animals have been genotyped for selection by Labogena with the 50k chip. Bulls genomic estimated breeding values (GEBVs) were made official in June 2009. In 2010, the market share of the young bulls reached 30% and is expected to increase rapidly. Advertising actions have been undertaken to recommend a time-restricted use of young bulls with a limited number of doses. In January 2011, genomic selection was opened to all farmers for females. Current developments focus on the extension of the method to a multi-breed context, to use all reference populations simultaneously in genomic evaluation.


animal ◽  
2015 ◽  
Vol 9 (5) ◽  
pp. 738-749 ◽  
Author(s):  
G. Gaspa ◽  
H. Jorjani ◽  
C. Dimauro ◽  
M. Cellesi ◽  
P. Ajmone-Marsan ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 378
Author(s):  
Kate F. Johnson ◽  
Natalie Chancellor ◽  
D. Claire Wathes

Dairy heifer calves experience high levels of contagious disease during their preweaning period, which may result in poor welfare, reduced performance or mortality. We determined risk factors for disease in a cohort study of 492 heifers recruited from 11 commercial UK dairy farms. Every animal received a weekly examination by a veterinarian from birth to nine weeks using the Wisconsin scoring system. Multivariable models were constructed using a hierarchical model with calf nested within farm. Outcome variables for each disease included a binary outcome (yes/no), disease duration and a composite disease score (CDS) including both severity and duration. Diarrhoea, bovine respiratory disease (BRD) and umbilical disease were recorded in 48.2%, 45.9% and 28.7% of calves, respectively. A higher heifer calving intensity in the week of birth reduced the CDS for diarrhoea, with a marginal benefit of improved passive transfer (serum immunoglobulin G (IgG) measured at recruitment). The CDS for BRD was reduced by housing in fixed groups, higher mean temperature in month of birth, increasing milk solids fed, increasing IgG, and higher plasma IGF-1 at recruitment. Conversely, higher calving intensity and higher temperature both increased the CDS for umbilical disease, whereas high IGF-1 was again protective. Although good passive transfer reduced the severity of BRD, it was not significant in models for diarrhoea and umbilical disease, emphasising the need to optimise other aspects of management. Measuring IGF-1 in the first week was a useful additional indicator for disease risk.


2018 ◽  
Vol 50 (1) ◽  
Author(s):  
Chunyan Zhang ◽  
Robert Alan Kemp ◽  
Paul Stothard ◽  
Zhiquan Wang ◽  
Nicholas Boddicker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document