scholarly journals Milk Urea Nitrogen Concentration: Heritability and Genetic Correlations with Reproductive Performance and Disease

2005 ◽  
Vol 88 (12) ◽  
pp. 4434-4440 ◽  
Author(s):  
R.G. Mitchell ◽  
G.W. Rogers ◽  
C.D. Dechow ◽  
J.E. Vallimont ◽  
J.B. Cooper ◽  
...  
2020 ◽  
Vol 98 (8) ◽  
pp. 375-379
Author(s):  
S Kananub ◽  
P Pechkerd ◽  
J VanLeeuwen ◽  
H Stryhn ◽  
P Arunvipas

2021 ◽  
Vol 65 (3) ◽  
pp. 30-39
Author(s):  
I. Maskaľová ◽  
V. Vajda

Abstract The aim of this study was to evaluate the effects of nutrition on the milk urea nitrogen (MUN) concentration; on the transformation of N in the farm’s conditions; and there-by allow the milk urea nitrogen concentration to serve as a tool to maximize the protein nutrition and the metabolism of the cows. The relations evaluated by linear or multiple regression confirmed that the highest nutritional effects of the crude protein (CP) on the MUN concentration, which represented a 69.3 % variation in the MUN content. According to the CP content in the total mix ration (TMR) and MUN content (3150 milk samples) under farm conditions, a regression relationship was determined for the estimated of MUN (mg.dl–1) = –13.2 + 0.16 × CP (g.kg–1 dry matter). For multiple regression, the rate of variation expressed by this relationship increased to 72 for nutrient content and 78.3 % for nutrient intake in the TMR. The efficiency of nitrogen utilization (ENU) determined by calculations based on the MUN content according to the regression equations represented a negative correlation (P < 0.0001; R2 = 0.854) with respect to the CP content in the TMR and that the increased CP content by 1 % in the range of 14 to 18 % in the TMR decreased the ENU by 1.48 %. Validation of the models for prediction of nitrogen transformation (ENU) for practical application on the farms determined the best equation, which used the available data from the routine analysis of Breeding services of Slovakia. After taking into consideration of our breeding conditions, it was confirmed that the equation of ENU had taken into account the MUN, in addition to the amount of the milk produced.


2018 ◽  
Vol 68 (2) ◽  
pp. 193-211 ◽  
Author(s):  
Huimin Zhang ◽  
Mengqi Wang ◽  
Hongrui Jiang ◽  
Yan Cui ◽  
Hailei Xia ◽  
...  

AbstractIn order to investigate the factors affecting milk urea nitrogen in Chinese Holstein cows, a large commercial dairy farm participated in a 30-month study. In this study, the mean milk urea nitrogen concentration was 11.75 mg/dl. The milk urea nitrogen reached its maximum value on day 90 of lactation for the first parity and the third or higher parities, but it peaked at the end of lactation for the second parity. The milk urea nitrogen of the first parity was lower than that of other parities. The milk urea nitrogen showed its minimum level in January, and reached its maximum in July. The milk urea nitrogen at the first month of lactation in cows calving in summer was higher than other seasons, while at the fourth month of lactation, the milk urea nitrogen of cows calving in autumn was significantly lower than in cows calving in other seasons. Positive correlations were observed between daily milk yield, net energy for lactation, crude protein and milk urea nitrogen for the first and third parities, but negative correlations were observed in the second parity. The milk urea nitrogen showed significantly positive correlations with fat content, total solid content and daily matter intake for all parities. A negative correlation was observed between milk urea nitrogen and protein content, with the exception of the second parity. For all data, as milk urea nitrogen concentration increased, milk protein content decreased. It has been recommended that milk urea nitrogen concentration should be evaluated in combination with parity, days in milk, season (or month), daily matter intake and dietary nutritional components, in order to improve the management and economic benefits of dairy farm.


Sign in / Sign up

Export Citation Format

Share Document