scholarly journals Slatted Floors and Solid Floors: Stress and Strain on the Bovine Hoof Capsule Analyzed in Finite Element Analysis

2006 ◽  
Vol 89 (1) ◽  
pp. 155-162 ◽  
Author(s):  
C. Hinterhofer ◽  
J.C. Ferguson ◽  
V. Apprich ◽  
H. Haider ◽  
C. Stanek
2015 ◽  
Vol 1090 ◽  
pp. 233-237
Author(s):  
Ji Jun Miao ◽  
Ri Sheng Long

In order to solve the cracking and poor reliability problems of motor box of Horizontal Roadheader, the static structural FEA (Finite Element Analysis) of cutting arm & motor box of the EBH160 Horizontal Roadheader was conducted, and the stress and strain contours of FEA were obtained. By comparing the calculated results, the safety factor of cutting arm & motor box was 1.36, which provides a reference for the optimal design of cutting arm & motor box.


2014 ◽  
Vol 908 ◽  
pp. 282-286
Author(s):  
Wan Rong Wu ◽  
Lin Chen

Drilling frame on TD165CH Down-The-Hole Drill that has large slenderness ratio and be longer than 10m is one component of Down-The-Hole drill which is mainly subjected to load.In the process of drilling, drilling frame is not only subjected to loads which are like tensile, compression and torsion and so on, and be under the influence of impacting and vibration of impactor,the situation of force is complicated.By analysing of working condition of Down-The-Hole drill,there get all kinds of limit states of typical working conditions, and then using Ansys doing finite element analysis, there get distribution of the stress and strain of drilling frame and the result of modal analysis to check whether drilling frame meets the requirements of strength and stiffness or not,and whether it is possible to resonate with the impactor or not.By analysis,Structure strength and stiffness of drilling Frame on TD165CH Down-The-Hole drill meet the requirements of practical engineering, and drilling Frame does not resonate with the impactor.


2013 ◽  
Vol 791-793 ◽  
pp. 718-721
Author(s):  
Man Man Xu ◽  
Yu Li ◽  
Sai Nan Xie ◽  
Qing Hua Chen

To analyse the road-header rack and pinion by using the finite element analysis software COSMOS/WORKS. Compared to the traditional analytic calculation and numerical analysis method, it is more intuitively get 28 ° pressure angle spur gear rack meshing stress and strain distribution, which can rack and pinion improvements designed to provide scientific reference.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


2012 ◽  
Vol 538-541 ◽  
pp. 2681-2684
Author(s):  
Zhi Cheng Huang

Took a type of ceramics for daily use vertical type high pressure grouting machine as the object of study, study the stress and strain of its upper and lower mould plates. Established their 3D model by CAD software Pro-E, and then import them into finite element analysis software to analysis the value and distribution of the stress and strain. The analysis results can provide some reference for design, and have some engineering and practical value.


2007 ◽  
Vol 561-565 ◽  
pp. 757-760
Author(s):  
Yong Shou Liu ◽  
Jun Liu ◽  
An Qiang Wang ◽  
Zhu Feng Yue

In this paper, an amendment method for stress and strain of double-curved laminated composite is proposed and studied. According to finite element analysis results of the same model with two different mesh size (coarse mesh size 120mm× 300mm and refined mesh size 30mm× 30mm ), stress and strain have been amended with modified formula in user material subroutine (UMAT) subprogram so that the corrected results of model with coarse mesh is similar to the results of model with refined mesh. Using this method, with coarse mesh, a satisfied accuracy results still can be obtained without refining mesh. It’s efficient for design and analysis of complex structures.


Sign in / Sign up

Export Citation Format

Share Document