Finite Element Analysis of Drilling Frame on Down-the-Hole Drill Based on Mechanical Mechanics and Mechanical Properties

2014 ◽  
Vol 908 ◽  
pp. 282-286
Author(s):  
Wan Rong Wu ◽  
Lin Chen

Drilling frame on TD165CH Down-The-Hole Drill that has large slenderness ratio and be longer than 10m is one component of Down-The-Hole drill which is mainly subjected to load.In the process of drilling, drilling frame is not only subjected to loads which are like tensile, compression and torsion and so on, and be under the influence of impacting and vibration of impactor,the situation of force is complicated.By analysing of working condition of Down-The-Hole drill,there get all kinds of limit states of typical working conditions, and then using Ansys doing finite element analysis, there get distribution of the stress and strain of drilling frame and the result of modal analysis to check whether drilling frame meets the requirements of strength and stiffness or not,and whether it is possible to resonate with the impactor or not.By analysis,Structure strength and stiffness of drilling Frame on TD165CH Down-The-Hole drill meet the requirements of practical engineering, and drilling Frame does not resonate with the impactor.

2014 ◽  
Vol 490-491 ◽  
pp. 616-620 ◽  
Author(s):  
Li Li

This paper makes a static strength calculation and fatigue life prediction of a car's rear axle. To find out the dangerous stress and strain points of the bridge shell by making calculation analysis of the structure strength and stiffness of the rear axle bridge shell by using finite element analysis software, MSC.Patran and MSC.Nastran. Using MSC.Fatigue software on the rear axle to make an analysis of its fatigue life base on the finite element analysis, and make a modal analysis with MSC.Nastran software.


2011 ◽  
Vol 128-129 ◽  
pp. 1312-1315
Author(s):  
Guo Ping Yang ◽  
Fa Long Zhu ◽  
Wen Long Yin ◽  
Yi Cheng

This paper is primarily focused on finite element analysis and topological optimization of impact plunger and drill rod. Finite element method is an extremely functional, due to which we apply ANSYS software to analyze the stress and strain that impact plunger and drill rod bear in actual working condition and optimize their structure.


2011 ◽  
Vol 105-107 ◽  
pp. 615-618 ◽  
Author(s):  
Zhen Ping Zhou ◽  
Di Jiang ◽  
Jia Liang Li

Gantry bucket wheel stacker-reclaimer belongs to large complex steel structure. Once it is instability at the working time that will make a large accident. So we have to calculate its strength and stiffness. But its connection and the working condition are very complex. And the size of the model is so large which leads to debase the calculation efficiency. This paper use Pro/E software to create the model. And use Pro/Mechanical to make a finite element analysis. Through the properly simplified the model, we can increase the calculation efficiency. During the calculation result we find that the Pulley yoke, Rigid leg and Flexible leg appear big stress areas. We will give an optimization design for the irrational place and high stress areas. So that to improve the Gantry bucket wheel stacker-reclaimer on-site safety. And provide a certain reference for the subsequent design and improvement.


2010 ◽  
Vol 34-35 ◽  
pp. 751-755 ◽  
Author(s):  
Gui Mo You ◽  
Jie Min Ding ◽  
Hui Zhu Yang ◽  
Zhi Jun He

With ANSYS finite element analysis software, finite element method was used to analyze the flexible Ferris wheel in this paper. By obtaining stress and deformation of the structure strength and stiffness was calculated and assessed. Improvements were made on this basis to meet the design requirements. With stability and dynamic analysis structure has good global stability and the frequency spectrum of structure is dense and even distribution. The analysis procedure and results indicated in this paper can be used as a reference for the analysis and design of similar projects.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2015 ◽  
Vol 1090 ◽  
pp. 233-237
Author(s):  
Ji Jun Miao ◽  
Ri Sheng Long

In order to solve the cracking and poor reliability problems of motor box of Horizontal Roadheader, the static structural FEA (Finite Element Analysis) of cutting arm & motor box of the EBH160 Horizontal Roadheader was conducted, and the stress and strain contours of FEA were obtained. By comparing the calculated results, the safety factor of cutting arm & motor box was 1.36, which provides a reference for the optimal design of cutting arm & motor box.


2013 ◽  
Vol 791-793 ◽  
pp. 718-721
Author(s):  
Man Man Xu ◽  
Yu Li ◽  
Sai Nan Xie ◽  
Qing Hua Chen

To analyse the road-header rack and pinion by using the finite element analysis software COSMOS/WORKS. Compared to the traditional analytic calculation and numerical analysis method, it is more intuitively get 28 ° pressure angle spur gear rack meshing stress and strain distribution, which can rack and pinion improvements designed to provide scientific reference.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


2012 ◽  
Vol 538-541 ◽  
pp. 2681-2684
Author(s):  
Zhi Cheng Huang

Took a type of ceramics for daily use vertical type high pressure grouting machine as the object of study, study the stress and strain of its upper and lower mould plates. Established their 3D model by CAD software Pro-E, and then import them into finite element analysis software to analysis the value and distribution of the stress and strain. The analysis results can provide some reference for design, and have some engineering and practical value.


Sign in / Sign up

Export Citation Format

Share Document