scholarly journals X-ray Investigation of Microstructure and Properties Evolution on Superalloy Inconel-718 derivative during Rapid Joule Heating and Severe Plastic Deformation Concurrently

Author(s):  
Lembit Kommel

The purpose of this study is to X-ray line-profile analysis of the effect of rapid Joule heating and severe plastic deformation concurrently on microstructure and properties evolution in polycrystalline austenitic Fe-balanced superalloy EP718E, which is Inconel 718 derivative. The microstructure of superalloy at different stages of processing was examined by X-ray diffraction, by scanning electron microscopy, and by energy dispersive spectrometry techniques. The mechanical properties of evolution were studied by means of tension and high cycle fatigue testings. The results of X-ray study show that the intensity, raw areas, and net areas were a step–by–step changed according to processing routines. Is shown that under shear stress the fcc-crystallites were deformed and the peaks parameters by 2-Theta scale changed partly.

Author(s):  
Lembit Kommel ◽  
R. Traksmaa ◽  
V. Mikli

The purpose of this study is to X-ray line-profile analysis of the effect of rapid Joule heating and severe plastic deformation concurrently on microstructure and properties evolution in polycrystalline austenitic Fe-balanced superalloy EP718E, which is Inconel 718 derivative. The microstructure of superalloy at different stages of processing was examined by X-ray diffraction, by scanning electron microscopy, and by energy dispersive spectrometry techniques. The mechanical properties of evolution were studied by means of tension and high cycle fatigue testings. The results of X-ray study show that the intensity, raw areas, and net areas were a step–by–step changed according to processing routines. Is shown that under shear stress the fcc-crystallites were deformed and the peaks parameters by 2-Theta scale changed partly.


2006 ◽  
Vol 519-521 ◽  
pp. 835-840 ◽  
Author(s):  
I. Schiller ◽  
Jenő Gubicza ◽  
Zsolt Kovács ◽  
Nguyen Q. Chinh ◽  
Judit Illy

Supersaturated Al-4.8Zn-1.2Mg-0.14Zr and Al-5.7Zn-1.9Mg-0.35Cu (wt.%) alloys were processed by Equal-Channel Angular Pressing (ECAP) at 200°C. The crystallite size distribution and the characteristic parameters of the dislocation structure of both Al matrix and precipitates were determined by X-ray diffraction line profile analysis, which has been complemented by transmission electron microscopy (TEM) observations. The results show that severe plastic deformation promotes the precipitation process and consequently has a strong influence on the strength of these alloys.


2016 ◽  
Vol 685 ◽  
pp. 525-529
Author(s):  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Andrey V. Belyakov ◽  
Ivan A. Shulepov

The changes of the phase composition, structure and physicomechanical properties of Ti‑40 mas % Nb after severe plastic deformation are investigated in this paper. By the methods of microstructural, X-ray diffraction analysis and scanning electron microscopy it is determined that phase and structural transformations occur simultaneously in the alloy after severe plastic deformation. The martensitic structure formed after tempering disappears. The inverse α'' → β transformation occurs. The structure consisting of oriented refined grains is formed. The alloy is hardened due to the cold working. The Young modulus is equal to 79 GPa and it is less than that of initial alloy and close to the value obtained after tempering. It is possible that Young modulus is reduced by additional annealing.


2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


2013 ◽  
Vol 67 ◽  
pp. 126-132 ◽  
Author(s):  
G. Polt ◽  
F. Spieckermann ◽  
H. Wilhelm ◽  
M.B. Kerber ◽  
E. Schafler ◽  
...  

2000 ◽  
Vol 640 ◽  
Author(s):  
C. Seitz ◽  
A. Magerl ◽  
R. Hock ◽  
H. Heissenstein ◽  
R. Helbig

ABSTRACTWe have investigated by x-ray diffraction defect structures in 6H-SiC after neutron irradiation with different fluences and followed by different annealing procedures. An interpretation along a model of Klimanek [1, 4–6] shows, that higher fluences lead to a stronger than linear reduction of the correlation length, whereas higher annealing temperatures correlate with a better recovery of the correlation length. In addition defects of 1st kind created by irradiation are reduced by annealing. We find that annealing changes the character of the defects and it accentuates a defect structure already present in the original samples.


1992 ◽  
Vol 36 ◽  
pp. 595-601
Author(s):  
P. Newcomer ◽  
B. Morosin ◽  
R. A. Graham

AbstractX-ray diffraction line-profile analysis on tetragonal forms of SnO2 (cassiterite), MnO2 (pyrolusite), and previously studied TiO2 (rutile), which were subjected to high pressure shock loading, show that residual lattice strain and coherent “crystal” size are a function of shock parameters. An interesting observation on a sample of MnO2 concerns the recovery of cubic Mn2O3 (bixbyite) in the material subjected to 22 GPa, indicating a shock-induced chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document