In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors

2012 ◽  
Vol 116 (4) ◽  
pp. 854-860 ◽  
Author(s):  
Jennifer Eschbacher ◽  
Nikolay L. Martirosyan ◽  
Peter Nakaji ◽  
Nader Sanai ◽  
Mark C. Preul ◽  
...  

Object Frozen-section analysis is the current standard for the intraoperative diagnosis of brain tumors. Intraoperative confocal microscopy is an emerging technology with the potential to visualize tumor histopathological features and cell morphology in real time. The authors report their findings using this new intraoperative technology in vivo with sodium fluorescein contrast during the course of 50 microsurgical tumor resections. Methods Eighty-eight regions were visualized with confocal microscopy, and corresponding biopsy samples were examined with routine neuropathological analysis. The tumors studied included meningiomas, schwannomas, gliomas of various grades, and a hemangioblastoma. The confocal microscopic features of each tumor and of various artifacts inherent to the technology were documented. A pathologist working in a blinded fashion reviewed a subset of the images in a further evaluation of the usefulness of the device as a diagnostic tool. Results Overall, intraoperative confocal imaging correlated surprisingly well with corresponding traditional histological findings, including the identification of many pathognomonic cytoarchitectural features of various brain tumors. In the blinded study, 26 (92.9%) of 28 lesions were diagnosed correctly. Conclusions Further study will be necessary for better definition of the role of intraoperative confocal microscopy as a routine adjunct for intraoperative brain tumor diagnosis.

2011 ◽  
Vol 68 (suppl_2) ◽  
pp. ons282-ons290 ◽  
Author(s):  
Nader Sanai ◽  
Jennifer Eschbacher ◽  
Guido Hattendorf ◽  
Stephen W. Coons ◽  
Mark C. Preul ◽  
...  

Abstract Background: The ability to diagnose brain tumors intraoperatively and identify tumor margins during resection could maximize resection and minimize morbidity. Advances in optical imaging enabled production of a handheld intraoperative confocal microscope. Objective: To present a feasibility analysis of the intraoperative confocal microscope for brain tumor resection. Methods: Thirty-three patients with brain tumor treated at Barrow Neurological Institute were examined. All patients received an intravenous bolus of sodium fluorescein before confocal imaging with the Optiscan FIVE 1 system probe. Optical biopsies were obtained within each tumor and along the tumor-brain interfaces. Corresponding pathologic specimens were then excised and processed. These data was compared by a neuropathologist to identify the concordance for tumor histology, grade, and margins. Results: Thirty-one of 33 lesions were tumors (93.9%) and 2 cases were identified as radiation necrosis (6.1%). Of the former, 25 (80.6%) were intra-axial and 6 (19.4%) were extra-axial. Intra-axial tumors were most commonly gliomas and metastases, while all extra-axial tumors were meningiomas. Among high-grade gliomas, vascular neo-proliferation, as well as tumor margins, were identifiable using confocal imaging. Meningothelial and fibrous meningiomas were distinct on confocal microcopy—the latter featured spindle-shaped cells distinguishable from adjacent parenchyma. Other tumor histologies correlated well with standard neuropathology tissue preparations. Conclusion: Intraoperative confocal microscopy is a practicable technology for the resection of human brain tumors. Preliminary analysis demonstrates reliability for a variety of lesions in identifying tumor cells and the tumor-brain interface. Further refinement of this technology depends upon the approval of tumor-specific fluorescent contrast agents for human use.


2019 ◽  
Vol 5 (5) ◽  
pp. eaan9388 ◽  
Author(s):  
Yimei Huang ◽  
Zhenguo Wu ◽  
Harvey Lui ◽  
Jianhua Zhao ◽  
Shusen Xie ◽  
...  

We report a novel approach to selectively close single blood vessels within tissue using multiphoton absorption–based photothermolysis (multiphoton photothermolysis) without the need of exogenous agents. The treatment process is monitored by in vivo reflectance confocal microscopy in real time. Closure of single targeted vessels of varying sizes ranging from capillaries to venules was demonstrated. We also demonstrated that deeply situated blood vessels could be closed precisely while preserving adjacent overlying superficial blood vessels. In vivo confocal Raman spectroscopy of the treatment sites confirmed vessel closure as being mediated by local coagulative damage. Partial vessel occlusion could be achieved, and it is accompanied by increased intravascular blood cell speed. Multiphoton photothermolysis under real-time reflectance confocal imaging guidance provides a novel precision medicine approach for noninvasive, precise microsurgery treatment of vascular diseases on a per-vessel/per-lesion basis. The method could also be used for building ischemic stroke models for basic biology study.


2002 ◽  
Vol 208 (1) ◽  
pp. 75-75 ◽  
Author(s):  
K. B. Sung ◽  
C. Liang ◽  
M. Descour ◽  
T. Collier ◽  
M. Follen ◽  
...  

Author(s):  
Milind Rajadhyaksha ◽  
Mark Henrichs ◽  
K. P. Ananth ◽  
Hung-Ta Chang ◽  
Salvador González

2012 ◽  
Vol 87 (5) ◽  
pp. 782-784 ◽  
Author(s):  
Mariana Carvalho Costa ◽  
Hernando Vega Eljaiek ◽  
Leonardo Spagnol Abraham ◽  
Luna Azulay-Abulafia ◽  
Marco Ardigo

Melasma is a common disorder of hypermelanosis that affects mainly young and middle-aged women of Fitzpatrick's phototypes III-V. The disease significantly impacts their lives. In vivo reflectance confocal microscopy, a spreading technology for the noninvasive evaluation of the skin up to the papillary dermis, provides real-time en face images with cellular resolution. We present a case of melasma with in vivo reflectance confocal microscopy findings closely correlated to the histopathological features described in the literature.


2020 ◽  
Vol 21 (18) ◽  
pp. 6478
Author(s):  
Daniel T. Doty ◽  
Julia Schueler ◽  
Vienna L. Mott ◽  
Cassie M. Bryan ◽  
Nathan F. Moore ◽  
...  

The immune checkpoint blockade represents a revolution in cancer therapy, with the potential to increase survival for many patients for whom current treatments are not effective. However, response rates to current immune checkpoint inhibitors vary widely between patients and different types of cancer, and the mechanisms underlying these varied responses are poorly understood. Insights into the antitumor activities of checkpoint inhibitors are often obtained using syngeneic mouse models, which provide an in vivo preclinical basis for predicting efficacy in human clinical trials. Efforts to establish in vitro syngeneic mouse equivalents, which could increase throughput and permit real-time evaluation of lymphocyte infiltration and tumor killing, have been hampered by difficulties in recapitulating the tumor microenvironment in laboratory systems. Here, we describe a multiplex in vitro system that overcomes many of the deficiencies seen in current static histocultures, which we applied to the evaluation of checkpoint blockade in tumors derived from syngeneic mouse models. Our system enables both precision-controlled perfusion across biopsied tumor fragments and the introduction of checkpoint-inhibited tumor-infiltrating lymphocytes in a single experiment. Through real-time high-resolution confocal imaging and analytics, we demonstrated excellent correlations between in vivo syngeneic mouse and in vitro tumor biopsy responses to checkpoint inhibitors, suggesting the use of this platform for higher throughput evaluation of checkpoint efficacy as a tool for drug development.


2012 ◽  
Vol 8 (7) ◽  
pp. 1070-1073 ◽  
Author(s):  
Ki Su Kim ◽  
Seonghoon Kim ◽  
Songeun Beack ◽  
Jeong-A Yang ◽  
Seok Hyun Yun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document