scholarly journals Similar head impact acceleration measured using instrumented ear patches in a junior rugby union team during matches in comparison with other sports

2016 ◽  
Vol 18 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Doug A. King ◽  
Patria A. Hume ◽  
Conor Gissane ◽  
Trevor N. Clark

OBJECTIVE Direct impact with the head and the inertial loading of the head have been postulated as major mechanisms of head-related injuries, such as concussion. METHODS This descriptive observational study was conducted to quantify the head impact acceleration characteristics in under-9-year-old junior rugby union players in New Zealand. The impact magnitude, frequency, and location were collected with a wireless head impact sensor that was worn by 14 junior rugby players who participated in 4 matches. RESULTS A total of 721 impacts > 10g were recorded. The median (interquartile range [IQR]) number of impacts per player was 46 (IQR 37–58), resulting in 10 (IQR 4–18) impacts to the head per player per match. The median impact magnitudes recorded were 15g (IQR 12g–21g) for linear acceleration and 2296 rad/sec2 (IQR 1352–4152 rad/sec2) for rotational acceleration. CONCLUSIONS There were 121 impacts (16.8%) above the rotational injury risk limit and 1 (0.1%) impact above the linear injury risk limit. The acceleration magnitude and number of head impacts in junior rugby union players were higher than those previously reported in similar age-group sports participants. The median linear acceleration for the under-9-year-old rugby players were similar to 7- to 8-year-old American football players, but lower than 9- to 12-year-old youth American football players. The median rotational accelerations measured were higher than the median and 95th percentiles in youth, high school, and collegiate American football players.

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013012
Author(s):  
Madeline Uretsky ◽  
Sylvain Bouix ◽  
Ronald J. Killiany ◽  
Yorghos Tripodis ◽  
Brett Martin ◽  
...  

Background and Objectives:Late neuropathologies of repetitive head impacts from contact sports can include chronic traumatic encephalopathy (CTE) and white matter degeneration. White matter hyperintensities (WMH) on fluid attenuated inversion recovery (FLAIR) MRI scans are often viewed as microvascular disease from vascular risk, but might have unique underlying pathologies and risk factors in the setting of repetitive head impacts. We investigated the neuropathological correlates of antemortem WMH in brain donors exposed to repetitive head impacts. The association between WMH, and repetitive head impact exposure and informant-reported cognitive and daily function were tested.Methods:This imaging-pathological correlation study included symptomatic deceased men exposed to repetitive head impacts. Donors had antemortem FLAIR scans from medical records and were without evidence of CNS neoplasm, large vessel infarcts, hemorrhage, and/or encephalomalacia. WMH were quantified using log-transformed values for total lesion volume (TLV), calculated using the lesion prediction algorithm from the Lesion Segmentation Toolbox. Neuropathological assessments included semi-quantitative ratings of white matter rarefaction, cerebrovascular disease, p-tau severity (CTE stage, dorsolateral frontal cortex), and Aβ. Among football players, years of play was a proxy for repetitive head impact exposure. Retrospective informant-reported cognitive and daily function were assessed using the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ). Regression models controlled for demographics, diabetes, hypertension, and MRI resolution. Statistical significance was defined as p<0.05.Results:The sample included 75 donors: 67 football players and 8 non-football contact sport athletes and/or military veterans. Dementia was the most common MRI indication (64%). Fifty-three (70.7%) had CTE at autopsy. Log-TLV was associated with white matter rarefaction (OR=2.32, 95% CI=1.03,5.24, p=0.04), arteriolosclerosis (OR=2.38, 95% CI=1.02,5.52, p=0.04), CTE stage (OR=2.58, 95% CI=1.17,5.71, p=0.02), and dorsolateral frontal p-tau severity (OR=3.03, 95% CI=1.32,6.97, p=0.01). There was no association with Aβ. More years of football play was associated with log-TLV (b=0.04, 95% CI=0.01,0.06, p=0.01). Greater log-TLV correlated with higher FAQ (unstandardized beta=4.94, 95% CI=0.42,8.57, p=0.03) and CDS scores (unstandardized beta=15.35, 95% CI=-0.27,30.97, p=0.05).Discussion:WMH might capture long-term white matter pathologies from repetitive head impacts, including those from white matter rarefaction and p-tau, in addition to microvascular disease. Prospective imaging-pathological correlation studies are needed.Classification of Evidence:This study provides Class IV evidence of associations between FLAIR white matter hyperintensities, and neuropathological changes (white matter rarefaction, arteriolosclerosis, p-tau accumulation), years of American football play, and reported cognitive symptoms in symptomatic brain donors exposed to repetitive head impacts.


2019 ◽  
Vol 7 (4) ◽  
pp. 232596711983558 ◽  
Author(s):  
Shane V. Caswell ◽  
Patricia Kelshaw ◽  
Andrew E. Lincoln ◽  
Lisa Hepburn ◽  
Reginald Dunn ◽  
...  

Background: The rate of concussions in boys’ lacrosse is reported to be the third highest among high school sports in the United States, but no studies have described game-related impacts among boys’ lacrosse players. Purpose: To characterize verified game-related impacts, both overall and those directly to the head, in boys’ varsity high school lacrosse. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 77 male participants (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.05 m; mean weight, 73.4 ± 12.2 kg) were instrumented with sensors and were videotaped during 39 games. All verified game-related impacts ≥20 g were summarized in terms of frequency, peak linear acceleration (PLA), and peak rotational velocity (PRV). Descriptive statistics and impact rates per player-game (PG) with corresponding 95% CIs were calculated. Results: Overall, 1100 verified game-related impacts were recorded (PLA: median, 33.5 g [interquartile range (IQR), 25.7-51.2]; PRV: median, 1135.5 deg/s [IQR, 790.0-1613.8]) during 795 PGs. The rate for all verified game-related impacts was 1.38 impacts per PG (95% CI, 1.30-1.47). Of these, 680 (61.8%) impacts (PLA: median, 35.9 g [IQR, 26.7-55.5]; PRV: 1170.5 deg/s [IQR, 803.2-1672.8]) were directly to the head (impact rate, 0.86 impacts/PG [95% CI, 0.79-0.92]). Overall, midfielders (n = 514; 46.7%) sustained the most impacts, followed by attackers (n = 332; 30.2%), defenders (n = 233; 21.2%), and goalies (n = 21; 1.9%). The most common mechanisms for overall impacts and direct head impacts were contact with player (overall: n = 706 [64.2%]; head: n = 397 [58.4%]) and stick (overall: n = 303 [27.5%]; head: n = 239 [35.1%]), followed by ground (overall: n = 73 [6.6%]; head: n = 26 [3.8%]) and ball (overall: n = 15 [1.4%]; head: n = 15 [2.2%]). Direct head impacts were associated with a helmet-to-helmet collision 31.2% of the time, and they were frequently (53.7%) sustained by the players delivering the impact. Nearly half (48.8%) of players delivering contact used their helmets to initiate contact that resulted in a helmet-to-helmet impact. Players receiving a head impact from player contact were most often unprepared (75.9%) for the collision. Conclusion: The helmet is commonly used to initiate contact in boys’ high school lacrosse, often targeting defenseless opponents. Interventions to reduce head impacts should address rules and coaching messages to discourage intentional use of the helmet and encourage protection of defenseless opponents.


2012 ◽  
Vol 116 (1) ◽  
pp. 222-233 ◽  
Author(s):  
Adam Bartsch ◽  
Edward Benzel ◽  
Vincent Miele ◽  
Vikas Prakash

Object Concussion is the signature American football injury of the 21st century. Modern varsity helmets, as compared with vintage leather helmets, or “leatherheads,” are widely believed to universally improve protection by reducing head impact doses and head injury risk for the 3 million young football players in the US. The object of this study was to compare the head impact doses and injury risks with 11 widely used 21st century varsity helmets and 2 early 20th century leatherheads and to hypothesize what the results might mean for children wearing similar varsity helmets. Methods In an injury biomechanics laboratory, the authors conducted front, oblique front, lateral, oblique rear, and rear head impact tests at 5.0 m/second using helmeted headforms, inducing near- and subconcussive head impact doses on par with approximately the 95th percentile of on-field collision severity. They also calculated impact dose injury risk parameters common to laboratory and on-field traumatic neuromechanics: linear acceleration, angular acceleration, angular velocity, Gadd Severity Index, diffuse axonal injury, acute subdural hematoma, and brain contusion. Results In many instances the head impact doses and head injury risks while wearing vintage leatherheads were comparable to or better than those while wearing several widely used 21st century varsity helmets. Conclusions The authors do not advocate reverting to leather headgear, but they do strongly recommend, especially for young players, instituting helmet safety designs and testing standards, which encourage the minimization of linear and angular impact doses and injury risks in near- and subconcussive head impacts.


2020 ◽  
Author(s):  
Kyle Kercher ◽  
Jesse A. Steinfeldt ◽  
Jonathan T. Macy ◽  
Keisuke Ejima ◽  
Keisuke Kawata

ABSTRACTPurposeUSA Football established five levels of contact (LOC) to guide the intensity of high school football practices. However, it remains unclear whether head impact exposure differs by LOC. The purpose of this study was to examine head impact frequency and magnitude by LOC in the overall sample and three position groups.MethodsThis longitudinal observational study included 24 high school football players during all practices and games in the 2019 season. Players wore a sensor-installed mouthguard that monitored head impact frequency, peak linear acceleration (PLA), and rotational head acceleration (PRA). Practice/game drills were filmed and categorized into 5 LOCs (air, bags, control, thud, live), and head impact data were assigned into 5 LOCs. Player position was categorized into linemen, hybrid, and skill.ResultsA total of 6016 head impacts were recorded during 5 LOCs throughout the season. In the overall sample, total number of impacts, sum of PLA, and PRA per player increased in an incremental manner (air<bags<control<thud<live), with the most head impacts in live (113.7±17.8 hits/player) and the least head impacts in air (7.7±1.9 hits/player). The linemen and hybrid groups had consistently higher impact exposure than the skill group. Average head impact magnitudes by position group were higher during live drills (PLA (41.0-45.9g) and PRA (3.3-4.6 krad/s2) per head impact), whereas other LOCs had lower magnitudes (PLA (18.2-23.2g) and PRA (1.6-2.3krad/s2) per impact).ConclusionOur data suggest that LOC may influence cumulative head impact exposure in high school football, with players incurring frequent head impacts during live, thud, and control. The data indicate the importance of considering LOCs to refine practice guidelines and policies to minimize head impact burden in high school football athletes.


2017 ◽  
Vol 20 (6) ◽  
pp. 604-612 ◽  
Author(s):  
Eamon T. Campolettano ◽  
Ryan A. Gellner ◽  
Steven Rowson

OBJECTIVEEven in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure.METHODSA total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity.RESULTSA total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). “Back” position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams.CONCLUSIONSHigh-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In this cohort, game impact rates exceeded those for practice. Back players, who were often positioned in the open field, were shown to experience elevated levels of head impact exposure relative to players at other positions. The analysis also suggests that practice intensity, which may be influenced by coaching style, may also affect high-magnitude head impact exposure. Future studies should investigate this aspect as a factor affecting head impact exposure.


Author(s):  
Ashley E. Evans ◽  
Madeline Curtis ◽  
Marguerite (Meg) Montjoy ◽  
Erica Beidler

Context: The rate of sport-related concussion diagnosis has significantly increased in recent years, which has created a need for injury prevention initiatives. There have been efforts put forth by researchers and American football organizations to teach athletes how to tackle properly in order to decrease the number of subconcussive head impacts and concussions. Clinical Question: Does the implementation of a behavioral tackling intervention decrease the head impact frequency in American football players? Clinical Bottom Line: There is moderate SORT Level B evidence to support the use of behavioral tackling interventions as a means for reducing head impact frequency in football athletes. All four included studies found a significant reduction in head impacts following a behavioral tackling intervention with study findings ranging from a 26–33% reduction in impact frequency. These findings were consistent in youth, high school, and college football players and for different types of behavioral tackling interventions. Therefore, these results indicate that behavioral tackling interventions have the potential to reduce the number of head impacts sustained by American football players, which may ultimately lead to a reduction in concussion occurrence as well.


2012 ◽  
Vol 28 (2) ◽  
pp. 174-183 ◽  
Author(s):  
Joseph J. Crisco ◽  
Bethany J. Wilcox ◽  
Jason T. Machan ◽  
Thomas W. McAllister ◽  
Ann-Christine Duhaime ◽  
...  

The purpose of this study was to quantify the severity of head impacts sustained by individual collegiate football players and to investigate differences between impacts sustained during practice and game sessions, as well as by player position and impact location. Head impacts (N = 184,358) were analyzed for 254 collegiate players at three collegiate institutions. In practice, the 50th and 95th percentile values for individual players were 20.0 g and 49.5 g for peak linear acceleration, 1187 rad/s2 and 3147 rad/s2 for peak rotational acceleration, and 13.4 and 29.9 for HITsp, respectively. Only the 95th percentile HITsp increased significantly in games compared with practices (8.4%, p = .0002). Player position and impact location were the largest factors associated with differences in head impacts. Running backs consistently sustained the greatest impact magnitudes. Peak linear accelerations were greatest for impacts to the top of the helmet, whereas rotational accelerations were greatest for impacts to the front and back. The findings of this study provide essential data for future investigations that aim to establish the correlations between head impact exposure, acute brain injury, and long-term cognitive deficits.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0021
Author(s):  
Patricia R. Combs ◽  
Cassie B. Ford ◽  
Elizabeth F. Teel ◽  
Erin B. Wasserman ◽  
Michael J. Cools ◽  
...  

Background: Body checking is the most common injury mechanism in ice hockey. Rule changes have sought to mitigate body checking exposure among youth players. In 2011, USA Hockey changed the legal body checking age from Pee Wee (11/12-year-olds) to Bantam (13/14-year-olds). Interestingly, Bantam players with checking experience during Pee Wee had a lower concussion risk relative to Bantam players without checking experience in a sample of Canadian youth hockey players. Understanding the head impact biomechanics underlying these findings could further elucidate the consequences of this rule change. Purpose: To determine the association between Pee Wee checking exposure and head impact biomechanics in a cohort of Bantam players. Methods: We prospectively collected data on Bantam ice hockey players during the 2006/07-2009/10 seasons and the 2012-2013 season. The 2006/07-2009/10 cohort (n= 61, age=13.9±0.5 years, height=168.2±8.7 cm, mass=59.9±10.4 kg) was allowed to body check (BC) as a Pee Wee player. The 2012-2013 cohort (n=15, age=13.3±0.4 years, height=167.5±7.4 cm, mass=57.5±8.6 kg) was not permitted to body check (NBC) as a Pee Wee player. Over the course of each season, head impacts were measured using in-helmet accelerometers. Only head impacts with linear acceleration ≥10 g were included in our analysis. Main outcome measures were mean linear acceleration (g) and rotational acceleration (rad/s2). Levene’s tests assessed equality of variance between groups. We employed mixed effects models to assess group differences in mean linear and rotational acceleration between BC and NBC groups. Results: The BC and NBC groups did not differ in height (t74=0.28, p=0.78) or mass (t74=0.84, p=0.40). When assessing group differences in head impact biomechanics, the NBC experienced significantly greater linear acceleration (F1,74=4.36, p=0.04) and greater rotational acceleration (F1,74=21.2, p<0.001) relative to the BC group. On average, the NBC group experienced 23.1 ± 0.87 g linear acceleration and 1993.5 ± 68.4 rad/s2 rotational acceleration compared to the BC group, which experienced 21.2 ± 0.30 g linear acceleration and 1615.9 ± 45.2 rad/s2 rotational acceleration. Conclusions: Bantam ice hockey players without body checking experience during their Pee Wee years experienced greater average linear and rotational acceleration relative to players with Pee Wee body checking experience. While removing body checking from Pee Wee ice hockey may reduce short-term injury risk, these athletes may demonstrate more high-risk head impact biomechanics when legally allowed to body check. Future research should continue to examine the influence of policy changes on head impact biomechanics and injury risk in youth ice hockey. [Figure: see text]


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0000
Author(s):  
Landon B. Lempke ◽  
A. Faith Bartello ◽  
Melissa N. Anderson ◽  
Rachel S. Johnson ◽  
Julianne D. Schmidt ◽  
...  

Background: There is growing fear among healthcare professionals and parents regarding youth tackle football, likely due to highly publicized concerns about potential long-term physical and cognitive health of professional football players. Parents and advocacy groups are pushing for state legislation to ban youth tackle football in favor of flag football to avoid repetitive head impacts that are potentially associated with late-life cognitive deficits. Although the head impact burden experienced during flag football is likely lower than tackle, no research has compared head impact exposure between youth tackle and flag football. Therefore, our purpose was to examine head impact exposure and magnitudes between youth tackle and flag football players. Methods: Twenty-seven tackle (age=11.0±1.5y, height=145.8±11.9 cm, mass=45.0±14.9 kg) and 29 flag football players (age=8.6±1.1y, height=133.9±8.4 cm, mass=33.9±9.5 kg) were enrolled in this prospective cohort study. Participants were fitted with head impact sensors (Triax Sim-G) worn throughout the entire 2017 season that recorded impact frequency and magnitude (linear [g] and rotational acceleration [rad/s2]). Athlete exposure was defined as one player participating in one session. Impact rates (IR) were calculated as impacts per one athlete exposure. Game, practice, and combined IR were compared between groups using impact rate ratios (IRR). IRR with 95% confidence intervals (CI) not containing 1.0 were considered statistically significant. Acceleration values were binned into low- and high-magnitude categories (linear split at 40 g, rotational split at 4,600rad/s2). Magnitude category frequencies were compared between groups using Chi-square test of association (p<0.05), and 90th percentile acceleration values are presented. Results: One-thousand nine-hundred and eight tackle (735 game, 1173 practice; 70.66 impacts/player) and 169 flag (101 game, 68 practice; 5.83 impacts/player) football head impacts were recorded. Tackle players experienced a higher impact rate during games versus practices (IRR=1.41; 95%CI:1.29 -1.55) while flag players experienced a lower impact rate (IRR=0.60; 95%CI:0.44-0.81). Practice and game head impacts combined resulted in tackle players (IR=3.06) accruing 4.61 times the impact rate (95%CI:3.94-5.40) of flag players (IR=0.66). Tackle players sustained a significantly greater head impact rate than flag players during games (tackle IR=3.83, flag IR=0.55; IRR=6.90; 95%CI:5.60-8.49) and practices (tackle IR=2.72, flag IR=0.93; IRR=2.91; 95%CI:2.28-3.72). Tackle 90th percentile linear acceleration was 53.32 g (median=32.50 g) and flag was 53.32 g (median=32.65 g). Tackle 90th percentile rotational acceleration was 7,000 rad/s2 (median=3,200rad/s2) while flag was 8,300 rad/s2 (median=4,100rad/s2). Tackle experienced a significantly higher frequency of low-magnitude rotational acceleration impacts (71.6% vs. 57.4%) and lower frequency of high-magnitude impacts than flag (28.4% vs 42.6%;?2=15.15, p<0.001). There were no significant associations for linear acceleration (p=0.75). Conclusions/Significance: Our results indicate youth flag football head impact rates are 82%-88% lower compared to tackle. Contrary to general belief, youth flag football players experienced numerous head impacts with a greater tendency for high-magnitude rotational acceleration head impacts. Although fewer head impacts occur during youth flag football, parents and coaches should be aware that head impacts do occur during practices and games. Whether high-magnitude or high-frequency head impacts influence long-term health remains unknown. Our findings provide novel evidence into the head impact exposure occurring during youth tackle and flag football. Longitudinal studies examining head impact biomechanics and advanced neuroimaging in youth tackle and flag football players nationwide is warranted to ensure long term cognitive health.


2018 ◽  
Vol 34 (5) ◽  
pp. 354-360 ◽  
Author(s):  
Srinidhi Bellamkonda ◽  
Samantha J. Woodward ◽  
Eamon Campolettano ◽  
Ryan Gellner ◽  
Mireille E. Kelley ◽  
...  

This study aimed to compare head impact exposures between practices and games in football players ages 9 to 14 years, who account for approximately 70% of all football players in the United States. Over a period of 2 seasons, 136 players were enrolled from 3 youth programs, and 49,847 head impacts were recorded from 345 practices and 137 games. During the study, individual players sustained a median of 211 impacts per season, with a maximum of 1226 impacts. Players sustained 50th (95th) percentile peak linear acceleration of 18.3 (46.9) g, peak rotational acceleration of 1305.4 (3316.6) rad·s−2, and Head Impact Technology Severity Profile of 13.7 (24.3), respectively. Overall, players with a higher frequency of head impacts at practices recorded a higher frequency of head impacts at games (P < .001,r2 = .52), and players who sustained a greater average magnitude of head impacts during practice also recorded a greater average magnitude of head impacts during games (P < .001). The youth football head impact data quantified in this study provide valuable insight into the player exposure profile, which should serve as a key baseline in efforts to reduce injury.


Sign in / Sign up

Export Citation Format

Share Document