scholarly journals A novel approach to navigated implantation of S-2 alar iliac screws using inertial measurement units

2016 ◽  
Vol 24 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Gregory F. Jost ◽  
Jonas Walti ◽  
Luigi Mariani ◽  
Philippe Cattin

OBJECT The authors report on a novel method of intraoperative navigation with inertial measurement units (IMUs) for implantation of S-2 alar iliac (S2AI) screws in sacropelvic fixation of the human spine and its application in cadaveric specimens. METHODS Screw trajectories were planned on a multiplanar reconstruction of the preoperative CT scan. The pedicle finder and screwdriver were equipped with IMUs to guide the axial and sagittal tilt angles of the planned trajectory, and navigation software was developed. The entry points were chosen according to anatomical landmarks on the exposed spine. After referencing, the sagittal and axial orientation of the pedicle finder and screwdriver were wirelessly monitored on a computer screen and aligned with the preoperatively planned tilt angles to implant the S2AI screws. The technique was performed without any intraoperative imaging. Screw positions were analyzed on postoperative CT scans. RESULTS Seventeen of 18 screws showed a good S2AI screw trajectory. Compared with the postoperatively measured tilt angles of the S2AI screws, the IMU readings on the screwdriver were within an axial plane deviation of 0° to 5° in 15 (83%) and 6° to 10° in 2 (11%) of the screws and within a sagittal plane deviation of 0° to 5° in 15 (83%) and 6° to 10° in 3 (17%) of the screws. CONCLUSIONS IMU–based intraoperative navigation may facilitate accurate placement of S2AI screws.

2016 ◽  
Vol 29 (06) ◽  
pp. 475-483 ◽  
Author(s):  
Alexandra Pauls ◽  
Chris Kawcak ◽  
Kevin Haussler ◽  
Gina Bertocci ◽  
Valerie Moorman ◽  
...  

Summary Objective: To evaluate the use of inertial measurement units (IMU) for quantification of canine limb kinematics. Methods: Sixteen clinically healthy, medium-sized dogs were enrolled. Baseline kinematic data were acquired using an optical motion capture system. Following this baseline data acquisition, a harness system was used for attachment of IMU to the animals. Optical kinematic data of dogs with and without the harness were compared to evaluate the influence of the harness on gait parameters. Sagittal plane joint kinematics acquired simultaneously with IMU and the optical system were compared for the carpal, tarsal, stifle and hip joints. Comparisons of data were made using the concordance correlation coefficient (CCC) test and evaluation of root mean squared errors (RMSE). Results: No significant differences were demonstrated in stance duration, swing duration or stride length between dogs instrumented with or without the harness, however, mean RMSE values ranged from 4.90° to 14.10° across the various joints. When comparing simultaneously acquired optical and IMU kinematic data, strong correlations were found for all four joints evaluated (CCC: carpus = 0.98, hock = 0.95, stifle = 0.98, hip = 0.96) and median RMSE values were similar across the joints ranging from 2.51° to 3.52°. Conclusions and Clinical relevance: Canine sagittal plane motion data acquisition with IMU is feasible, and optically acquired and IMU acquired sagittal plane kinematics had good correlation. This technology allows data acquisition outside the gait laboratory and may provide an alternative to optical kinematic gait analysis for the carpal, tarsal, stifle, and hip joints in the dog. Further investigation into this technology is indicated.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5749
Author(s):  
Nicos Haralabidis ◽  
David John Saxby ◽  
Claudio Pizzolato ◽  
Laurie Needham ◽  
Dario Cazzola ◽  
...  

Wearable sensors and motion capture technology are accepted instruments to measure spatiotemporal variables during punching performance and to study the externally observable effects of fatigue. This study aimed to develop a computational framework enabling three-dimensional inverse dynamics analysis through the tracking of punching kinematics obtained from inertial measurement units and uniplanar videography. The framework was applied to six elite male boxers performing a boxing-specific punch fatigue protocol. OpenPose was used to label left side upper-limb landmarks from which sagittal plane kinematics were computed. Custom-made inertial measurement units were embedded into the boxing gloves, and three-dimensional punch accelerations were analyzed using statistical parametric mapping to evaluate the effects of both fatigue and laterality. Tracking simulations of a sub-set of left-handed punches were formulated as optimal control problems and converted to nonlinear programming problems for solution with a trapezoid collocation method. The laterality analysis revealed the dominant side fatigued more than the non-dominant, while tracking simulations revealed shoulder abduction and elevation moments increased across the fatigue protocol. In future, such advanced simulation and analysis could be performed in ecologically valid contexts, whereby multiple inertial measurement units and video cameras might be used to model a more complete set of dynamics.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
Simon Beck ◽  
Bernhard Laufer ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller

AbstractDemographic changes and increasing air pollution entail that monitoring of respiratory parameters is in the focus of research. In this study, two customary inertial measurement units (IMUs) are used to measure the breathing rate by using quaternions. One IMU was located ventral, and one was located dorsal on the thorax with a belt. The relative angle between the quaternion of each IMU was calculated and compared to the respiratory frequency obtained by a spirometer, which was used as a reference. A frequency analysis of both signals showed that the obtained respiratory rates vary slightly (less than 0.2/min) between the two systems. The introduced belt can analyse the respiratory rate and can be used for surveillance tasks in clinical settings.


2021 ◽  
Vol 32 (4) ◽  
Author(s):  
Luigi D’Alfonso ◽  
Emanuele Garone ◽  
Pietro Muraca ◽  
Paolo Pugliese

AbstractIn this work, we face the problem of estimating the relative position and orientation of a camera and an object, when they are both equipped with inertial measurement units (IMUs), and the object exhibits a set of n landmark points with known coordinates (the so-called Pose estimation or PnP Problem). We present two algorithms that, fusing the information provided by the camera and the IMUs, solve the PnP problem with good accuracy. These algorithms only use the measurements given by IMUs’ inclinometers, as the magnetometers usually give inaccurate estimates of the Earth magnetic vector. The effectiveness of the proposed methods is assessed by numerical simulations and experimental tests. The results of the tests are compared with the most recent methods proposed in the literature.


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


Sign in / Sign up

Export Citation Format

Share Document