Biomechanical Effect of Lumbar Disc Degeneration Under Flexion/Extension: A Finite Element Model Study

Author(s):  
Lissette M. Ruberté ◽  
Raghu Natarajan ◽  
Gunnar B. J. Andersson

Degenerative disc disease (DDD) is a progressive pathological condition observed in 60 to 80% of the population [1]. It involves changes in both the biochemistry and morphology of the intervertebral disc and is associated with chronic low back pain, sciatica and adult scoliosis [2,3]. The most accepted theory of the effects of DDD on the kinematics of the spine is that proposed by Kirkaldy-Willis and Farfan which states that the condition initiates as a temporary dysfunction, followed by instability and then re-stabilization as the disease progresses [4]. Although there is no clear relationship between disc degeneration and the mechanical behavior of the lumbar spine, abnormal motion patterns either in the form of increased motion or erratic motion have been reported from studies on human cadaveric motion segments [5,6]. To date however no study has looked at how disc degeneration affects the adjacent segment mechanics. IN vivo testing is difficult for these purposes given that specimens are generally obtained from people at the later stages of life and consequently often display multiple pathologies. A finite element model is a viable alternative to study the mechanics of the segments adjacent to the diseased disc. It is hypothesized that moderate degeneration at one level will alter the kinematics of the whole lumbar spine.

Human spine is one of the complex structure of the human body. It provides the link between upper and lower extremities of the human body. It is estimated that at least 30% of people in the middle age group from thirty to fifty years have some degree of disc degeneration. Disc degeneration disease can affect the quality of life and in certain individual it can cause severe chronic pain if left untreated. The low back pain associated with lumbar disc degeneration is usually generated from two causes which are abnormal motion instability and inflammation. Abnormal motion instability occurs when the annulus fibrosus are worn down and cannot absorb stress on the human spine effectively resulting in changes in movements along the vertebral segment. To understand lumbar disc problem, a thorough knowledge of the biomechanics of the normal human lumbar spine and a disc degenerated lumbar spine is of great importance. In this study, Computed tomography image of a 33 year old male is used. A three dimensional (3D) human lumbar spine (L3 to L5) is created and validated with literature. The finite element model was modified to degenerated disc and studied the biomechanics of the lumbar spine. Comparison of the biomechanics of normal human lumbar spine is done with the human lumbar spine with disc degeneration for different range of motion and different loads. The result shows that the pressure generated on degenerated disc is greater than normal disc. This work can be implemented and used for designing implants and also for intervertebral disc related analysis


Author(s):  
Lakshminarayan Hariharan ◽  
Farid Amirouche ◽  
Ravikumar Varadarajan

Intervertebral disc degeneration is believed to be the main cause of low back pain and has mostly been treated with lumbar interbody fusion or arthrodesis. Although fusion is a very common solution to low back pain it has been associated with disc degeneration and degenerative spondylolisthesis in the adjacent segment. A number of studies have been performed to study the effect of fusion, however there has not been any significant study to observe a fused spine with a degenerated disc at an adjacent level. This study involved a finite element model of the Lumbar spine L1-L5 which was fused with a bone graft at the L4-L5 level and degenerated in two stages at the L3-L4 level and also analyzed with reduced disc heights all in different cases.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243771
Author(s):  
In-Suk Bae ◽  
Koang-Hum Bak ◽  
Hyoung-Joon Chun ◽  
Je Il Ryu ◽  
Sung-Jae Park ◽  
...  

Purpose This study aimed to investigate the biomechanical effects of a newly developed interspinous process device (IPD), called TAU. This device was compared with another IPD (SPIRE) and the pedicle screw fixation (PSF) technique at the surgical and adjacent levels of the lumbar spine. Materials and methods A three-dimensional finite element model analysis of the L1-S1 segments was performed to assess the biomechanical effects of the proposed IPD combined with an interbody cage. Three surgical models—two IPD models (TAU and SPIRE) and one PSF model—were developed. The biomechanical effects, such as range of motion (ROM), intradiscal pressure (IDP), disc stress, and facet loads during extension were analyzed at surgical (L3-L4) and adjacent levels (L2-L3 and L4-L5). The study analyzed biomechanical parameters assuming that the implants were perfectly fused with the lumbar spine. Results The TAU model resulted in a 45%, 49%, 65%, and 51% decrease in the ROM at the surgical level in flexion, extension, lateral bending, and axial rotation, respectively, when compared to the intact model. Compared to the SPIRE model, TAU demonstrated advantages in stabilizing the surgical level, in all directions. In addition, the TAU model increased IDP at the L2-L3 and L4-L5 levels by 118.0% and 78.5% in flexion, 92.6% and 65.5% in extension, 84.4% and 82.3% in lateral bending, and 125.8% and 218.8% in axial rotation, respectively. Further, the TAU model exhibited less compensation at adjacent levels than the PSF model in terms of ROM, IDP, disc stress, and facet loads, which may lower the incidence of the adjacent segment disease (ASD). Conclusion The TAU model demonstrated more stabilization at the surgical level than SPIRE but less stabilization than the PSF model. Further, the TAU model demonstrated less compensation at adjacent levels than the PSF model, which may lower the incidence of ASD in the long term. The TAU device can be used as an alternative system for treating degenerative lumbar disease while maintaining the physiological properties of the lumbar spine and minimizing the degeneration of adjacent segments.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


Sign in / Sign up

Export Citation Format

Share Document