scholarly journals Presurgical language mapping in bilingual children using transcranial magnetic stimulation: illustrative case

2021 ◽  
Vol 2 (14) ◽  
Author(s):  
Savannah K. Gibbs ◽  
Stephen Fulton ◽  
Basanagoud Mudigoudar ◽  
Frederick A. Boop ◽  
Shalini Narayana

BACKGROUND Presurgical mapping of eloquent cortex in young patients undergoing neurosurgery is critical but presents challenges unique to the pediatric population, including motion artifact, noncompliance, and sedation requirements. Furthermore, as bilingualism in children increases, functional mapping of more than one language is becoming increasingly critical. Transcranial magnetic stimulation (TMS), a noninvasive brain stimulation technique, is well suited to evaluate language areas in children since it does not require the patient to remain still during mapping. OBSERVATIONS A 13-year-old bilingual male with glioblastoma multiforme involving the left parietal lobe and deep occipital white matter underwent preoperative language mapping using magnetic resonance imaging-guided TMS. Language-specific cortices were successfully identified in both hemispheres. TMS findings aided in discussing with the family the risks of postsurgical deficits of tumor resection; postoperatively, the patient had intact bilingual speech and was referred for chemotherapy and radiation. LESSONS The authors’ findings add to the evolving case for preoperative dual language mapping in bilingual neurosurgical candidates. The authors illustrate the feasibility and utility of TMS as a noninvasive functional mapping tool in this child. TMS is safe, effective, and can be used for preoperative mapping of language cortex in bilingual children to aid in surgical planning and discussion with families.

2020 ◽  
Vol 132 (4) ◽  
pp. 1033-1042 ◽  
Author(s):  
Nico Sollmann ◽  
Alessia Fratini ◽  
Haosu Zhang ◽  
Claus Zimmer ◽  
Bernhard Meyer ◽  
...  

OBJECTIVENavigated transcranial magnetic stimulation (nTMS) in combination with diffusion tensor imaging fiber tracking (DTI FT) is increasingly used to locate subcortical language-related pathways. The aim of this study was to establish nTMS-based DTI FT for preoperative risk stratification by evaluating associations between lesion-to-tract distances (LTDs) and aphasia and by determining a cut-off LTD value to prevent surgery-related permanent aphasia.METHODSFifty patients with left-hemispheric, language-eloquent brain tumors underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by tumor resection. nTMS-based DTI FT was performed with a predefined fractional anisotropy (FA) of 0.10, 0.15, 50% of the individual FA threshold (FAT), and 75% FAT (minimum fiber length [FL]: 100 mm). The arcuate fascicle (AF), superior longitudinal fascicle (SLF), inferior longitudinal fascicle (ILF), uncinate fascicle (UC), and frontooccipital fascicle (FoF) were identified in nTMS-based tractography, and minimum LTDs were measured between the lesion and the AF and between the lesion and the closest other subcortical language-related pathway (SLF, ILF, UC, or FoF). LTDs were then associated with the level of aphasia (no/transient or permanent surgery-related aphasia, according to follow-up examinations).RESULTSA significant difference in LTDs was observed between patients with no or only surgery-related transient impairment and those who developed surgery-related permanent aphasia with regard to the AF (FA = 0.10, p = 0.0321; FA = 0.15, p = 0.0143; FA = 50% FAT, p = 0.0106) as well as the closest other subcortical language-related pathway (FA = 0.10, p = 0.0182; FA = 0.15, p = 0.0200; FA = 50% FAT, p = 0.0077). Patients with surgery-related permanent aphasia showed the lowest LTDs in relation to these tracts. Thus, LTDs of ≥ 8 mm (AF) and ≥ 11 mm (SLF, ILF, UC, or FoF) were determined as cut-off values for surgery-related permanent aphasia.CONCLUSIONSnTMS-based DTI FT of subcortical language-related pathways seems suitable for risk stratification and prediction in patients suffering from language-eloquent brain tumors. Thus, the current role of nTMS-based DTI FT might be expanded, going beyond the level of being a mere tool for surgical planning and resection guidance.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Davide Giampiccolo ◽  
Henrietta Howells ◽  
Ina Bährend ◽  
Heike Schneider ◽  
Giovanni Raffa ◽  
...  

Abstract In preoperative planning for neurosurgery, both anatomical (diffusion imaging tractography) and functional tools (MR-navigated transcranial magnetic stimulation) are increasingly used to identify and preserve eloquent language structures specific to individuals. Using these tools in healthy adults shows that speech production errors occur mainly in perisylvian cortical sites that correspond to subject-specific terminations of the major language pathway, the arcuate fasciculus. It is not clear whether this correspondence remains in oncological patients with altered tissue. We studied a heterogeneous cohort of 30 patients (fourteen male, mean age 44), undergoing a first or second surgery for a left hemisphere brain tumour in a language-eloquent region, to test whether speech production errors induced by preoperative transcranial magnetic stimulation had consistent anatomical correspondence to the arcuate fasciculus. We used navigated repetitive transcranial magnetic stimulation during picture naming and recorded different perisylvian sites where transient interference to speech production occurred. Spherical deconvolution diffusion imaging tractography was performed to map the direct fronto-temporal and indirect (fronto-parietal and parieto-temporal) segments of the arcuate fasciculus in each patient. Speech production errors were reported in all patients when stimulating the frontal lobe, and in over 90% of patients in the parietal lobe. Errors were less frequent in the temporal lobe (54%). In all patients, at least one error site corresponded to a termination of the arcuate fasciculus, particularly in the frontal and parietal lobes, despite distorted anatomy due to a lesion and/or previous resection. Our results indicate that there is strong correspondence between terminations of the arcuate fasciculus and speech errors. This indicates that white matter anatomy may be a robust marker for identifying functionally eloquent cortex, particularly in the frontal and parietal lobe. This knowledge may improve targets for preoperative mapping of language in the neurosurgical setting.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alexander F. Haddad ◽  
Jacob S. Young ◽  
Mitchel S. Berger ◽  
Phiroz E. Tarapore

Preoperative mapping of cortical structures prior to neurosurgical intervention can provide a roadmap of the brain with which neurosurgeons can navigate critical cortical structures. In patients undergoing surgery for brain tumors, preoperative mapping allows for improved operative planning, patient risk stratification, and personalized preoperative patient counseling. Navigated transcranial magnetic stimulation (nTMS) is one modality that allows for highly accurate, image-guided, non-invasive stimulation of the brain, thus allowing for differentiation between eloquent and non-eloquent cortical regions. Motor mapping is the best validated application of nTMS, yielding reliable maps with an accuracy similar to intraoperative cortical mapping. Language mapping is also commonly performed, although nTMS language maps are not as highly concordant with direct intraoperative cortical stimulation maps as nTMS motor maps. Additionally, nTMS has been used to localize cortical regions involved in other functions such as facial recognition, calculation, higher-order motor processing, and visuospatial orientation. In this review, we evaluate the growing literature on the applications of nTMS in the preoperative setting. First, we analyze the evidence in support of the most common clinical applications. Then we identify usages that show promise but require further validation. We also discuss developing nTMS techniques that are still in the experimental stage, such as the use of nTMS to enhance postoperative recovery. Finally, we highlight practical considerations when utilizing nTMS and, importantly, its safety profile in neurosurgical patients. In so doing, we aim to provide a comprehensive review of the role of nTMS in the neurosurgical management of a patient with a brain tumor.


2012 ◽  
Vol 9 (6) ◽  
pp. 660-664 ◽  
Author(s):  
Jan Coburger ◽  
Jari Karhu ◽  
Markus Bittl ◽  
Nikolai J. Hopf

Preoperative functional mapping in children younger than 5 years old remains a challenge. Awake functional MRI (fMRI) is usually not an option for these patients. Except for a description of passive fMRI in sedated patients and magnetoencephalography, no other noninvasive mapping method has been reported as a preoperative diagnostic tool in children. Therefore, invasive intraoperative direct cortical stimulation remains the method of choice. To the authors' knowledge, this is the first case of a young child undergoing preoperative functional motor cortex mapping with the aid of navigated transcranial magnetic stimulation (nTMS). In this 3-year-old boy with a rolandic ganglioglioma, awake preoperative mapping was performed using nTMS. A precise location of Broca area 4 could be established. The surgical approach was planned according to the preoperative findings. Intraoperative direct cortical stimulation verified the location of the nTMS hotspots, and complete resection of the precentral tumor was achieved. Navigated TMS is a precise tool for preoperative motor cortex mapping and is feasible even in very young pediatric patients. In children for whom performing the fMRI motor paradigm is challenging, nTMS is the only available option for functional mapping.


2009 ◽  
Vol 21 (10) ◽  
pp. 1946-1955 ◽  
Author(s):  
Lorella Battelli ◽  
George A. Alvarez ◽  
Thomas Carlson ◽  
Alvaro Pascual-Leone

Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of visual space when targets are simultaneously present in the ipsilesional visual field, a form of visual extinction. Visual extinction may arise due to an imbalance in the normal interhemispheric competition. To directly assess the issue of reciprocal inhibition, we used fMRI to localize those brain regions active during attention-based visual tracking and then applied low-frequency repetitive transcranial magnetic stimulation over identified areas in the left and right intraparietal sulcus to asses the behavioral effects on visual tracking. We induced a severe impairment in visual tracking that was selective for conditions of simultaneous tracking in both visual fields. Our data show that the parietal lobe is essential for visual tracking and that the two hemispheres compete for attentional resources during tracking. Our results provide a neuronal basis for visual extinction in patients with parietal lobe damage.


2015 ◽  
Vol 123 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. METHODS Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. RESULTS The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). CONCLUSIONS Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.


2019 ◽  
Vol 122 ◽  
pp. e1578-e1587 ◽  
Author(s):  
Josephine Jung ◽  
José-Pedro Lavrador ◽  
Sabina Patel ◽  
Anastasios Giamouriadis ◽  
Jordan Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document