A neural transplantation cannula and microinjector system: experimental and clinical experience
The authors present a simple, reliable, and safe system for performing neural transplantation in the human brain. The device consists of a transplantation cannula and microinjector system that has been specifically designed to reduce implantation-related trauma and to maximize the number of graft deposits for each injection. The system was evaluated first in an experimental rat model of Parkinson's disease (PD). Animal transplantation with this system showed excellent graft survival with minimal trauma to the brain. Following this experimental stage, the cannula and microinjector system was used in eight patients with PD enrolled in the Halifax Neural Transplantation Program who received bilateral putaminal transplants of fetal ventral mesencephalic tissue. A total of 16 transplantation operations and 64 trajectories were performed in the eight patients, and there were no intra- or perioperative complications. Magnetic resonance imaging studies obtained 24 hours after surgery revealed no evidence of tissue damage or hemorrhage. Transplant survival was confirmed on fluorodopa positron emission tomography scans 6 and 12 months after surgery. As neural transplantation procedures for the treatment of neurological conditions evolve, the ability to deliver viable grafts safely will become of critical importance. The device presented here has been proven to be of value in maximizing the number of graft deposits while minimizing implantation-related trauma to the host brain.