scholarly journals History of spinal cord localization

2004 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Sait Naderi ◽  
Uğur Türe ◽  
T. Glenn Pait

The first reference to spinal cord injury is recorded in the Edwin Smith papyrus. Little was known of the function of the cord before Galen's experiments conducted in the second century AD. Galen described the protective coverings of the spinal cord: the bone, posterior longitudinal ligament, dura mater, and pia mater. He gave a detailed account of the gross anatomy of the spinal cord. During the medieval period (AD 700–1500) almost nothing of note was added to Galen's account of spinal cord structure. The first significant work on the spinal cord was that of Blasius in 1666. He was the first to differentiate the gray and white matter of the cord and demonstrated for the first time the origin of the anterior and posterior spinal nerve roots. The elucidation of the various tracts in the spinal cord actually began with demonstrations of pyramidal decussation by Mistichelli (1709) and Pourfoir du Petit (1710). Huber (1739) recorded the first detailed account of spinal roots and the denticulate ligaments. In 1809, Rolando described the substantia gelati-nosa. The microtome, invented in 1824 by Stilling, proved to be one of the fundamental tools for the study of spinal cord anatomy. Stilling's technique involved slicing frozen or alcohol-hardened spinal cord into very thin sections and examining them unstained by using the naked eye or a microscope. With improvements in histological and experimental techniques, modern studies of spinal cord anatomy and function were initiated by Brown-Séquard. In 1846, he gave the first demonstration of the decussation of the sensory tracts. The location and direction of fiber tracts were uncovered by the experimental studies of Burdach (1826), Türck (1849), Clarke (1851), Lissauer (1855), Goll (1860), Flechsig (1876), and Gowers (1880). Bastian (1890) demonstrated that in complete transverse lesions of the spinal cord, reflexes below the level of the lesion are lost and muscle tone is abolished. Flatau (1894) observed the laminar nature of spinal pathways. The 20th century ushered in a new era in the evaluation of spinal cord function and localization; however, the total understanding of this remarkable organ remains elusive. Perhaps the next century will provide the answers to today's questions about spinal cord localization.

2021 ◽  
Author(s):  
Delaram Poormoghadam ◽  
Bita Rasoulian Shiadeh ◽  
Fereshte Azedi ◽  
Hani Tavakol ◽  
Seyed Mahdi Rezayat ◽  
...  

Abstract Spinal cord injury (SCI) is a debilitating condition for which no definitive treatment has yet been identified. Noteworthy, it influences other tissues through inflammatory reactions and metabolic disturbance. Therefore, fingolimod (FTY-720) as an FDA-approved inflammatory modulator would be promising. In the present study, nanocarriers at two distinct monodisperse particle sizes of 60 (nF60) and 190 (nF190) nm were prepared.The neural stem cell (NSC) viability and LDH release were studied in the face of the nanocarriers and free FTY-720. Results indicated that nanocarriers and free FTY-720 enhanced NSC viability than the control group.However, nF190 significantly induced less cell membrane damage than nF60. Nanocarriers and free FTY-720 enhanced motor neuron recovery in SCI rats, while body weight and return to bladder reflux by nF190 was significantly higher than nF60 groups. Return to bladder reflux might be due to the role of FTY-720 in regulation of detrusor muscle tone and preservation of the integrity of vessels by acting on endothelial cells. Moreover,nF190 gained higher soleus muscle weight than the free drugs;probably decreasing pro-inflammatory cytokines in soleus diminish muscular atrophy in SCI rats.To sum thing up, larger nanacarrirs with less cell membrane damage seems to be more efficient than smaller ones to manage SCI.


1873 ◽  
Vol 19 (87) ◽  
pp. 465-466
Author(s):  
Batty Tuke

Professor Betz, of Kiew, has lately produced brain sections, which have attracted very considerable attention in Vienna. His specimens are of vast extent. He appears to be able to produce thin sections of an entire hemisphere. We append his method of hardening and cutting as it is stated in the “Correspondentze Blatt der deutschen Gesellschaft für Psychiatrie und Gerichtlich Psychologie, Jan., 1873.” The method of hardening which we wish to bring into notice is as follows:—observing that differences exist in the treatment of the spinal-cord, cerebrum and cerebellum. The spinal-cord—after tbe careful removal of the dura mater, it is placed in spirit of from 75 to 80 per cent., which is tinged a clear brown colour by the addition of Iodine. After from one to three days, during which the preparation must stand in a cool temperature, the Pia Mater and the Arachnoid are also removed; the specimen remaining in the spirit, to which a few drops of Iodine must be added daily for three days, maintaining an ordinary temperature. It is then transferred to a three per cent. solution of Chromate of Potass, and back again to the cool temperature. Here it hardens thoroughly, which is known by the fluid becoming turbid, and by the formation of a brown deposit upon the preparation. When this occurs, it must be immediately thoroughly washed with water, and immersed in a solution of Chromate of Potass, from a half to one per cent. strength, in which it will not become too hard or brittle.


2012 ◽  
Vol 29 (3) ◽  
pp. 462-468 ◽  
Author(s):  
Jau-Ching Wu ◽  
Yu-Chun Chen ◽  
Laura Liu ◽  
Wen-Cheng Huang ◽  
Tzeng-Ji Chen ◽  
...  

2010 ◽  
Vol 12 (3) ◽  
pp. 301-305 ◽  
Author(s):  
Yoshihiko Kato ◽  
Tsukasa Kanchiku ◽  
Yasuaki Imajo ◽  
Kotaro Kimura ◽  
Kazuhiko Ichihara ◽  
...  

Object The authors evaluated the biomechanical effect of 3 different degrees of static compression in a model of the spinal cord in order to investigate the effect of cord compression in patients with ossification of the posterior longitudinal ligament (OPLL). Methods A 3D finite element spinal cord model consisting of gray matter, white matter, and pia mater was established. As a simulation of OPLL-induced compression, a rigid plate compressed the anterior surface of the cord. The degrees of compression were 10, 20, and 40% of the anteroposterior (AP) diameter of the cord. The cord was supported from behind by the rigid body along its the posterior border, simulating the lamina. Stress distributions inside of the cord were evaluated. Results The stresses on the cord were very low under 10% compression. At 20% compression, the stresses on the cord increased very slightly. At 40% compression, the stresses on the cord became much higher than with 20% compression, and high stress distributions were observed in gray matter and the lateral and posterior funiculus. The stresses on the compressed layers were much higher than those on the uncompressed layer. Conclusions The stress distributions at 10 and 20% compression of the AP diameter of the spinal cord were very low. The stress distribution at 40% compression was much higher. The authors conclude that a critical point may exist between 20 and 40% compression of the AP diameter of the cord such that when the degree of the compression exceeds this point, the stress distribution becomes much higher, and that this may contribute to myelopathy.


Acta Naturae ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 4-10 ◽  
Author(s):  
A. N. Minakov ◽  
A. S. Chernov ◽  
D. S. Asutin ◽  
N. A. Konovalov ◽  
G. B. Telegin

Pathologies associated with spinal cord injury are some of the leading diseases in the world. The search for new therapeutic agents and 3D biodegradable materials for the recovery of spinal cord functions is a topical issue. In this review, we have summarized the literature data on the most common experimental models of spinal cord injury in laboratory rats and analyzed the experience of using 3D biodegradable materials (scaffolds) in experimental studies of spinal trauma. The advantages and disadvantages of the described models are systematically analyzed in this review.


1907 ◽  
Vol XIV (1) ◽  
pp. 121-125
Author(s):  
L. М. Shapiro

Having outlined in some detail the results of the experimental studies of Stroebe, Fickler and Ramon-y-Cajal regarding the regeneration of the spinal cord and mentioning the work of Bielschowsky'aro concerning the pathological investigation of two cases of pulp glioma, the author describes the data he obtained in experiments on dogs and in the pathological study of two cases of traumatic spinal cord injury in humans.


2021 ◽  
Vol 32 (2) ◽  
pp. 297-301
Author(s):  
Desirée Elizabeth Pasqualetto Antikievicz ◽  
Giulio Bartié Rossi ◽  
Marcos Vinicius Calfatt Maldaun ◽  
Paulo Henrique Pires de Aguiar ◽  
Daniel Gripp ◽  
...  

Background: Cervical spondylotic myelopathy is a degenerative disease of the intervertebral disc and vertebral body of the spine that causes cervical spinal cord injury due to central vertebral canal stenosis. Its prevalence is higher in the elderly. Treatment is usually surgical when the spinal cord is affected either clinically with pyramidal release or radiologically with the altered spinal cord. Objective: The rationale of this study is to analyze the myelomalacia and the ossification of posterior longitudinal ligament as prognostic factors in the postoperative evolution of patients with cervical canal compression who underwent laminoplasty by open-door or french-door techniques. Methods: We performed a retrospective analysis of 18 surgical cases of spondylotic cervical myelopathy of the same senior neurosurgeon, using the chi-square test to analyze prognostic factors for patients’ postoperative evolution in the Nurick scale, after open-door or french-door laminoplasty. Results: The comparison between pre and postoperative showed an improvement of 71.43% of cases that did not have ligament ossification compared to 45.45% of cases that presented posterior longitudinal ligament ossification. Also, there was a better prognosis in patients without myelomalacia, as 71.43% of them improved their condition against only 45.45% improvement in those with myelomalacia. Conclusion: There is a need for further studies with larger samples to expressively prove that the presence of longitudinal ligament ossification and the previous presence of myelomalacia are factors of worse prognosis in the postoperative evolution of patients with cervical spondylotic myelopathy submitted to laminoplasty.


Sign in / Sign up

Export Citation Format

Share Document