Intrathecal phenol and glycerin in metrizamide for treatment of intractable spasms in paraplegia

1985 ◽  
Vol 63 (1) ◽  
pp. 125-127 ◽  
Author(s):  
Brett A. Scott ◽  
Zelig Weinstein ◽  
Robert Chiteman ◽  
Morris W. Pulliam

✓ Intractable lower extremity spasms after spinal cord injury is a significant source of morbidity. A case of refractory spasticity in paraplegia was successfully converted to flaccid paraplegia by intrathecal injection of phenol and glycerin in metrizamide. This chemical rhizolysis is simple and effective, and the presence of metrizamide allows both fluoroscopic guidance for accurate intrathecal phenol placement and good miscibility with cerebrospinal fluid. A brief comparative review of alternative therapeutic modalities is presented.

1993 ◽  
Vol 79 (5) ◽  
pp. 742-751 ◽  
Author(s):  
Paul C. Francel ◽  
Bruce A. Long ◽  
Jacek M. Malik ◽  
Curtis Tribble ◽  
John A. Jane ◽  
...  

✓ Traumatic spinal cord injury occurs in two phases: biomechanical injury, followed by ischemia and reperfusion injury. Biomechanical injury to the spinal cord, preceded or followed by various pharmaceutical manipulations or interventions, has been studied, but the ischemia/reperfusion aspect of spinal cord injury isolated from the biomechanical injury has not been previously evaluated. In the current study, ischemia to the lumbar spinal cord was induced in albino rabbits via infrarenal aortic occlusion, and two interventions were analyzed: the use of U74006F (Tirilazad mesylate), a 21-aminosteroid, and cerebrospinal fluid (CSF) drainage. These treatment modalities were tested alone or in combination. In Phase 1 of this study, the rabbits received 1.0 mg/kg of Tirilazad or an equal volume of vehicle (controls) prior to the actual occlusion, three doses of Tirilazad (1 mg/kg each) during the occlusion, then several doses after the occlusion. Of the Tirilazad-treated animals, 30% became paraplegic while 70% of the control animals became paraplegic. Phase 2 involved the same doses of Tirilazad as in Phase 1 and, in addition, CSF pressure monitoring and drainage were performed. The paraplegia rate was 79% in the control animals, 36% in the group receiving Tirilazad alone, 25% in the group with CSF drainage alone, and 20% in the Tirilazad plus CSF drainage group. This rate also correlated with changes noted in CSF pressure; both Tirilazad administration alone and CSF drainage alone induced a decrease in CSF pressure and the two combined produced a further decrease. There was marked improvement in the perfusion pressure when using Tirilazad alone, CSF drainage alone, and Tirilazad therapy in combination with CSF drainage, with the last group producing the largest increase. This change in CSF pressure and perfusion pressure correlated with improved functional neurological outcome. Pathological examination revealed that Tirilazad therapy reduced the extensive and diffuse neuronal, glial, and endothelial damage to (in its most severe form) a more patchy focal region of damage in the gray matter. Cerebrospinal fluid drainage resulted in pyknosis of some motor neurons, and some eosinophilia. The combination of CSF drainage and Tirilazad administration resulted in the least abnormality, with either normal or near-normal spinal cords. It is concluded that Tirilazad administration decreased CSF pressure during spinal cord ischemia and reperfusion and, like CSF drainage, increased and improved the perfusion pressure to the spinal cord, decreased spinal cord damage, and improved functional outcome. These effects may be related to the role that Tirilazad has on free radical scavenging during ischemia and reperfusion, and it is possible that Tirilazad therapy alone or in combination with CSF drainage is an effective adjunct to other neural protective measures in spinal cord injury.


1988 ◽  
Vol 68 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Roberto Pallini ◽  
Eduardo Fernandez ◽  
Alessandro Sbriccoli

✓ The extent of the retrograde degeneration of corticospinal axons following transection of the spinal cord was studied in rats by labeling corticospinal axons with anterogradely transported horseradish peroxidase injected in the sensorimotor cortex. Axotomized corticospinal axons underwent progressive and continuing retrograde degeneration. In specimens examined 5, 14, 28, and 56 days after trauma, the tips of the transected corticospinal axons were seen to terminate at 181 ± 80 µm, 977 ± 203 µm, 1751 ± 344 µm, and 2559 ± 466 µm (mean ± standard deviation), respectively, from the site of transection. The rate of retrograde degeneration varied according to the interval after spinal cord transection, as follows: 36.2 µm/day during the first 5 days; 88.4 µm/day between 5 and 14 days; 55.3 µm/day between 14 and 28 days; and 28.8 µm/day between 28 and 56 days. These findings may serve as useful parameters for the objective assessment of therapeutic modalities in spinal cord injury research.


1994 ◽  
Vol 80 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Shlomo Constantini ◽  
Wise Young

✓ Recent clinical trials have reported that methylprednisolone sodium succinate (MP) or the monosialic ganglioside GM1 improves neurological recovery in human spinal cord injury. Because GM1 may have additive or synergistic effects when used with MP, the authors compared MP, GM1, and MP+GM1 treatments in a graded rat spinal cord contusion model. Spinal cord injury was caused by dropping a rod weighing 10 gm from a height of 1.25, 2.5, or 5.0 cm onto the rat spinal cord at T-10, which had been exposed via laminectomy. The lesion volumes were quantified from spinal cord Na and K shifts at 24 hours after injury and the results were verified histologically in separate experiments. A single dose of MP (30 mg/kg), given 5 minutes after injury, reduced 24-hour spinal cord lesion volumes by 56% (p = 0.0052), 28% (p = 0.0065), and 13% (p > 0.05) in the three injury-severity groups, respectively, compared to similarly injured control groups treated with vehicle only. Methylprednisolone also prevented injury-induced hyponatremia and increased body weight loss in the spine-injured rats. When used alone, GM1 (10 to 30 mg/kg) had little or no effect on any measured variable compared to vehicle controls; when given concomitantly with MP, GM1 blocked the neuroprotective effects of MP. At a dose of 3 mg/kg, GM1 partially prevented MP-induced reductions in lesion volumes, while 10 to 30 mg/kg of GM1 completely blocked these effects of MP. The effects of MP on injury-induced hyponatremia and body weight loss were also blocked by GM1. Thus, GM1 antagonized both central and peripheral effects of MP in spine-injured rats. Until this interaction is clarified, the authors recommend that MP and GM1 not be used concomitantly to treat acute human spinal cord injury. Because GM1 modulates protein kinase activity, protein kinases inhibit lipocortins, and lipocortins mediate anti-inflammatory effects of glucocorticoids, it is proposed that the neuroprotective effects of MP are partially due to anti-inflammatory effects and that GM1 antagonizes the effects of MP by inhibiting lipocortin. Possible beneficial effects of GM1 reported in central nervous system injury may be related to the effects on neural recovery rather than acute injury processes.


1984 ◽  
Vol 61 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Ronald W. J. Ford ◽  
David N. Malm

✓ Hypocarbia, normocarbia, or hypercarbia was maintained for an 8-hour period beginning 30 minutes after acute threshold spinal cord injuries in cats. No statistically significant differences in neurological recovery or histologically assessed tissue preservation were found among the three groups of animals 6 weeks after injury. No animal recovered the ability to walk. It is concluded that maintenance of hypercarbia or hypocarbia during the early postinjury period is no more therapeutic than maintenance of normocarbia. Mortality rates and tissue preservation data suggest, however, that postinjury hypocarbia may be less damaging than hypercarbia.


2002 ◽  
Vol 97 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Erkan Kaptanoglu ◽  
Selcuk Palaoglu ◽  
H. Selcuk Surucu ◽  
Mutlu Hayran ◽  
Etem Beskonakli

Object. There is a need for an accurate quantitative histological technique that also provides information on neurons, axons, vascular endothelium, and subcellular organelles after spinal cord injury (SCI). In this paper the authors describe an objective, quantifiable technique for determining the severity of SCI. The usefulness of ultrastructural scoring of acute SCI was assessed in a rat model of contusion injury. Methods. Spinal cords underwent acute contusion injury by using varying weights to produce graded SCI. Adult Wistar rats were divided into five groups. In the first group control animals underwent laminectomy only, after which nontraumatized spinal cord samples were obtained 8 hours postsurgery. The weight-drop technique was used to produce 10-, 25-, 50-, and 100-g/cm injuries. Spinal cord samples were also obtained in the different trauma groups 8 hours after injury. Behavioral assessment and ultrastructural evaluation were performed in all groups. When the intensity of the traumatic injury was increased, behavioral responses showed a decreasing trend. A similar significant negative correlation was observed between trauma-related intensity and ultrastructural scores. Conclusions. In the present study the authors characterize quantitative ultrastructural scoring of SCI in the acute, early postinjury period. Analysis of these results suggests that this method is useful in evaluating the degree of trauma and the effectiveness of pharmacotherapy in neuroprotection studies.


2005 ◽  
Vol 3 (4) ◽  
pp. 302-307 ◽  
Author(s):  
Christopher B. Shields ◽  
Y. Ping Zhang ◽  
Lisa B. E. Shields ◽  
Yingchun Han ◽  
Darlene A. Burke ◽  
...  

Object. There are no clinically based guidelines to direct the spine surgeon as to the proper timing to undertake decompression after spinal cord injury (SCI) in patients with concomitant stenosis-induced cord compression. The following three factors affect the prognosis: 1) severity of SCI; 2) degree of extrinsic spinal cord compression; and 3) duration of spinal cord compression. Methods. To elucidate further the relationship between varying degrees of spinal stenosis and a mild contusion-induced SCI (6.25 g-cm), a rat SCI/stenosis model was developed in which 1.13- and 1.24-mm-thick spacers were placed at T-10 to create 38 and 43% spinal stenosis, respectively. Spinal cord damage was observed after the stenosis—SCI that was directly proportional to the duration of spinal cord compression. The therapeutic window prior to decompression was 6 and 12 hours in the 43 and 38% stenosis—SCI lesions, respectively, to maintain locomotor activity. A significant difference in total lesion volume was observed between the 2-hour and the delayed time(s) to decompression (38% stenosis—SCI, 12 and 24 hours, p < 0.05; 43% stenosis—SCI, 24 hours, p < 0.05) indicating a more favorable neurological outcome when earlier decompression is undertaken. This finding was further supported by the animal's ability to support weight when decompression was performed by 6 or 12 hours compared with 24 hours after SCI. Conclusions. Analysis of the findings in this study suggests that early decompression in the rat improves locomotor function. Prolongation of the time to decompression may result in irreversible damage that prevents locomotor recovery.


1986 ◽  
Vol 65 (1) ◽  
pp. 108-110 ◽  
Author(s):  
Daniel Dumitru ◽  
James E. Lang

✓ A rare case of cruciate paralysis is reported in a 39-year-old man following a motor-vehicle accident. The differentiation of this syndrome from a central cervical spinal cord injury is delineated.


2004 ◽  
Vol 100 (1) ◽  
pp. 56-61
Author(s):  
Pierre-Yves Mure ◽  
Mark Galdo ◽  
Nathalie Compagnone

Object. The authors conducted a study to establish outcomes associated with bladder function in a mouse model of spinal cord injury (SCI) and to assess the sensitivity of these outcomes in determining the efficacy of pharmacological treatments. Methods. A mouse model of moderate contusive SCI was used. Outcome parameters included physiological, behavioral, and morphological measurements. To test the sensitivity of these outcomes, the authors used a dehydroepiandrosterone (DHEA) treatment that they had previously shown to promote neurological recovery effectively after SCI. A behavioral scale was used to identify the day at which autonomic function of the bladder was recovered. The reduction in the daily volume of urine during the period of functional recovery paralleled this scale. They then determined the day postinjury at which the functional differences between the vehicle- and DHEA-treated mice exhibited the maximal amplitude. Changes were measured in the composition of the extracellular matrix relative to collagen expression in the layer muscularis of the detrusor at this time point. They found that SCI increases the ratio of collagen type III to collagen type I in the detrusor. Moreover, in the DHEA-treated group, this ratio was similar to that demonstrated in sham-operated mice, establishing the sensitivity of this outcome to assess therapeutic benefits to the bladder function. They next examined the relationship between measurements of neurological recovery and controlled voiding by using cluster analysis. Conclusions. The authors found that early recovery of controlled voiding is predictive of motor recovery.


1985 ◽  
Vol 62 (4) ◽  
pp. 558-562 ◽  
Author(s):  
Giancarlo Barolat-Romana ◽  
Joel B. Myklebust ◽  
David C. Hemmy ◽  
Barbara Myklebust ◽  
William Wenninger

✓ Six patients with intractable spasms after spinal cord injury underwent implantation of an epidural spinal cord stimulation system. All the patients experienced good relief postoperatively. In three patients spinal cord stimulation consistently produced immediate inhibition of the spasms. This was evident within less than 1 minute of stimulation. Conversely, the spasms reappeared within less than 1 minute after cessation of the stimulation. The clinical observations were confirmed by polygraphic electromyographic recordings.


2001 ◽  
Vol 95 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Metin Tuna ◽  
Sait Polat ◽  
Tahsin Erman ◽  
Faruk Ildan ◽  
A. Iskender Göçer ◽  
...  

Object. The inflammatory cells that accumulate at the damaged site after spinal cord injury (SCI) may secrete interleukin-6 (IL-6), a mediator known to induce the expression of inducible nitric oxide synthase (iNOS). Any increased production of NO by iNOS activity would aggravate the primary neurological damage in SCI. If this mechanism does occur, the direct or indirect effects of IL-6 antagonists on iNOS activity should modulate this secondary injury. In this study, the authors produced spinal cord damage in rats and applied anti—rat IL-6 antibody to neutralize IL-6 bioactivity and to reduce iNOS. They determined the spinal cord tissue activities of Na+-K+/Mg++ adenosine-5′-triphosphatase (ATPase) and superoxide dismutase, evaluated iNOS immunoreactivity, and examined ultrastructural findings to assess the results of this treatment. Methods. Seventy rats were randomly allocated to four groups. Group I (10 rats) were killed to provide normal spinal cord tissue for testing. In Group II 20 rats underwent six-level laminectomy for the effects of total laminectomy alone to be determined. In Group III 20 rats underwent six-level T2–7 laminectomy and SCI was produced by extradural compression of the exposed cord. The same procedures were performed in the 20 Group IV rats, but these rats also received one (2 µg) intraperitoneal injection of anti—rat IL-6 antibody immediately after the injury and a second dose 24 hours posttrauma. Half of the rats from each of Groups II through IV were killed at 2 hours and the other half at 48 hours posttrauma. The exposed cord segments were immediately removed and processed for analysis. Conclusions. The results showed that neutralizing IL-6 bioactivity with anti—rat IL-6 antibody significantly attenuates iNOS activity and reduces secondary structural changes in damaged rat spinal cord tissue.


Sign in / Sign up

Export Citation Format

Share Document