The extracellular matrix of the central and peripheral nervous systems: structure and function

1988 ◽  
Vol 69 (2) ◽  
pp. 155-170 ◽  
Author(s):  
James T. Rutka ◽  
Gerard Apodaca ◽  
Robert Stern ◽  
Mark Rosenblum

✓ The extracellular matrix (ECM) is the naturally occurring substrate upon which cells migrate, proliferate, and differentiate. The ECM functions as a biological adhesive that maintains the normal cytoarchitecture of different tissues and defines the key spatial relationships among dissimilar cell types. A loss of coordination and an alteration in the interactions between mesenchymal cells and epithelial cells separated by an ECM are thought to be fundamental steps in the development and progression of cancer. Although a substantial body of knowledge has been accumulated concerning the role of the ECM in most other tissues, much less is known of the structure and function of the ECM in the nervous system. Recent experiments in mammalian systems have shown that an increased knowledge of the ECM in the nervous system can lead to a better understanding of complex neurobiological processes under developmental, normal, and pathological conditions. This review focuses on the structure and function of the ECM in the peripheral and central nervous systems and on the importance of ECM macromolecules in axonal regeneration, cerebral edema, and cerebral neoplasia.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2507
Author(s):  
Carla Mucignat-Caretta

The brain may be affected by a variety of tumors of different grade, which originate from different cell types at distinct locations, thus impacting on the brain structure and function [...]


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e9
Author(s):  
Cenfeng Chu ◽  
Guisheng Zhong ◽  
Hui Li

Cytoskeleton plays an essential role in many functions in different cells and has been involved in the pathogenesis of many neural diseases. With the development of super-resolution fluorescence imaging technologies, which combine the molecular specificity and simple sample preparation of fluorescence microscopy and provide a spatial resolution comparable to that of electron microscopy, numerous new features have been revealed in the cytoskeletal organization of the subcortical cytoskeleton. A novel periodic lattice cytoskeleton is prevalent in different cell types throughout the nervous system. Here, we review the current studies of the molecular distribution, developmental mechanisms, and functional properties of the periodic cytoskeleton structure.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


2020 ◽  
Author(s):  
Reena Singh ◽  
Richard Tan ◽  
Clara Tran ◽  
Thomas Loudovaris ◽  
Helen E. Thomas ◽  
...  

2016 ◽  
Vol 21 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Lawrence A. Patterson ◽  
Samuel Berry

Purpose The purpose of this paper is to explore experiences of team culture, structure and function of an intensive support service (ISS) within the context of the recent service guidance “Building the Right Support” (NHS England, Local Government Association and Association of Directors of Adult Social Services, 2015). Reflections on the Hampshire and Southampton ISS set up in 2010 are discussed with a view to informing a debate about frameworks for ISS services nationally. Design/methodology/approach A reflective piece, drawing on experience and case examples. Findings This paper describes that a key function of an ISS is making individuals safe and this is significantly assisted by using shared team formulation, which can enable information and perspectives to be shared between and within teams as rapidly as possible. Further, a case is made for recognising the importance of inter-disciplinary practice, as the Southampton and Hampshire ISS has removed the “old fashioned” demarcations that led to individuals seeing a “procession” of different professionals from different disciplines. This relates to team structure, but importantly is about a culture of holding a shared identity based on positive behavioural support values, rather than a traditional uni-disciplinary perspective. Practical implications ISS models are being proposed by NHS England and this paper suggests some important practical aspects. Originality/value Limited literature exists examining the team culture within ISSs, which contributes to desired outcomes for service users. This paper opens a debate about structural and functional aspects of service delivery in this service model.


2004 ◽  
Vol 18 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Jianhua Zhang ◽  
Amy Moseley ◽  
Anil G. Jegga ◽  
Ashima Gupta ◽  
David P. Witte ◽  
...  

To understand the commitment of the genome to nervous system differentiation and function, we sought to compare nervous system gene expression to that of a wide variety of other tissues by gene expression database construction and mining. Gene expression profiles of 10 different adult nervous tissues were compared with that of 72 other tissues. Using ANOVA, we identified 1,361 genes whose expression was higher in the nervous system than other organs and, separately, 600 genes whose expression was at least threefold higher in one or more regions of the nervous system compared with their median expression across all organs. Of the 600 genes, 381 overlapped with the 1,361-gene list. Limited in situ gene expression analysis confirmed that identified genes did represent nervous system-enriched gene expression, and we therefore sought to evaluate the validity and significance of these top-ranked nervous system genes using known gene literature and gene ontology categorization criteria. Diverse functional categories were present in the 381 genes, including genes involved in intracellular signaling, cytoskeleton structure and function, enzymes, RNA metabolism and transcription, membrane proteins, as well as cell differentiation, death, proliferation, and division. We searched existing public sites and identified 110 known genes related to mental retardation, neurological disease, and neurodegeneration. Twenty-one of the 381 genes were within the 110-gene list, compared with a random expectation of 5. This suggests that the 381 genes provide a candidate set for further analyses in neurological and psychiatric disease studies and that as a field, we are as yet, far from a large-scale understanding of the genes that are critical for nervous system structure and function. Together, our data indicate the power of profiling an individual biologic system in a multisystem context to gain insight into the genomic basis of its structure and function.


Sign in / Sign up

Export Citation Format

Share Document