Percutaneous cervical cordotomy: a review of 181 operations on 146 patients with a study on the location of “pain fibers” in the C-2 spinal cord segment of 29 cases

1994 ◽  
Vol 80 (6) ◽  
pp. 975-985 ◽  
Author(s):  
Juan Lahuerta ◽  
David Bowsher ◽  
Simpson Lipton ◽  
Peter H. Buxton

✓ The authors present a review of 146 patients who underwent 181 percutaneous cervical cordotomies for intractable pain. In addition, an anatomical-clinical correlation was carried out for 29 of these patients. It was found that the fibers subserving pain sensation in the C-2 segment lie in the anterolateral funiculus between the level of the denticulate ligament and a line drawn perpendicularly from the medial angle of the ventral gray-matter horn to the surface of the cord. The best analgesic results have been obtained by creating lesions that extend 5.0 mm deep to the surface of the cord and destroy about 20% of the hemicord. There is a somatotopic organization with sacral fibers running ventromedially and cervical fibers running dorsolaterally. The authors believe that the ascending fibers subserving the distinct sensations of pain induced by tissue damage and pinprick, although mixed (overlapping) in the anterolateral funiculus of the spinal cord, are physiologically distinct from one another. Whereas some cordotomies, both in the current series and as reported in the literature, may affect these functions differentially, optimum pain relief seems to be obtained only when pinprick sensation is also abolished in the affected segments. Evoked pain sensation is not abolished by cordotomy, but its threshold is greatly raised. When pathological pain is completely abolished, so is pinprick sensation. However, in a number of cases where pathological pain was only partially alleviated, pinprick sensation remained intact. The significance of these and other cases reported in the literature is discussed. The importance of clinically distinguishing between pain caused by tissue damage and pinprick sensation is emphasized, as well as that between return of pre-existing or new tissue-damage pain and painful dysesthesia.

2004 ◽  
Vol 100 (6) ◽  
pp. 1119-1121 ◽  
Author(s):  
Matthew R. Johnson ◽  
Daniel J. Tomes ◽  
John S. Treves ◽  
Lyal G. Leibrock

✓ The authors describe a novel technique for the implantation of multipolar epidural spinal cord neurostimulator electrodes with the aid of a tubular retractor system. Spinal cord neurostimulation is used as a neuroaugmentive tool for treating chronic intractable pain syndromes. Minimally invasive placement of the multipolar neurostimulator electrodes may allow for shorter hospital stays and less postoperative pain associated with the incision.


1974 ◽  
Vol 41 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Sanford J. Larson ◽  
Anthony Sances ◽  
Donald H. Riegel ◽  
Glenn A. Meyer ◽  
Donald E. Dallmann ◽  
...  

✓ In 18 patients with cancer and intractable pain, capacitatively coupled pulses of 0.25 msec duration were delivered transcutaneously at 100 Hz to sets of five in-line electrodes implanted subdurally over the dorsal columns. Averaged somatosensory-evoked potentials were recorded from scalp electrodes before, during, and after application of current. All but one patient experienced relief of pain during stimulation, persisting for as long as several hours afterward. Eleven patients developed hyperactive deep reflexes, pathological reflexes, and decreased perception of joint rotation, pain, and touch below the level of current application. Somatosensory-evoked potential amplitudes were markedly reduced. All neurological findings returned to control values within 1 hour after each of repeated applications of current. Histological examination of spinal cord sections from four cancer patients showed no changes secondary to long-term current application. Similar currents were applied to the spinal cord of 15 monkeys with chronically implanted bipolar recording or stimulating electrodes over the lower, middle, and upper thoracic cord, in nucleus ventralis posterior lateralis (VPL), and over the sensory motor cortex (SMC). With application of current, the responses in VPL and SMC to peripheral stimulation were abolished. Evoked potential responses were abolished between bipolar stimulating electrodes and bipolar recording electrodes separated by the five in-line electrodes used to supply the 100 Hz current. However, when both stimulating and recording electrodes were either above or below the five in-line electrode set, evoked responses were unaffected. The findings indicate that applied currents blocked neuronal transmission by producing local changes in the cord. The prolonged alteration of cerebral evoked potentials and relief of pain, however, could also be related to involvement of supraspinal neurons.


1977 ◽  
Vol 46 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Stephen E. Rawe ◽  
Robert H. Roth ◽  
Margaret Boadle-Biber ◽  
William F. Collins

✓ Levels of norepinephrine (NE) in the spinal cord tissue of nontraumatized cats are highest in the cervical and lumbar enlargements. A rather uniform but slightly increasing concentration gradient from cephalad to caudad is observed in the thoracic segments. A 500 gm-cm trauma at the T-5 or C-7 spinal cord segment did not demonstrate any significant increase in NE levels measured sequentially over a 4-hour period after trauma. Dopamine levels could not be detected in the nontraumatized or traumatized cat spinal cords. Four traumatized cats treated with alpha methyl tyrosine, a tyrosine hydroxylase inhibitor, and followed clinically for 5 months showed no improvement in neurological function when compared to untreated traumatized cats. This study does not support the norepinephrine hypothesis of experimental spinal cord trauma.


2000 ◽  
Vol 93 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Chen Guang Yu ◽  
Omar Jimenez ◽  
Alexander E. Marcillo ◽  
Brian Weider ◽  
Kurt Bangerter ◽  
...  

Object. Local spinal cord cooling (LSCC) is associated with beneficial effects when applied following ischemic or traumatic spinal cord injury (SCI). However, the clinical application of LSCC is associated with many technical difficulties such as the requirement of special cooling devices, emergency surgery, and complicated postoperative management. If hypothermia is to be considered for future application in the treatment of SCI, alternative approaches must be developed. The objectives of the present study were to evaluate 1) the relationship between systemic and epidural temperature after SCI; 2) the effects of modest systemic hypothermia on histopathological damage at 7 and 44 days post-SCI; and 3) the effects of modest systemic hypothermia on locomotor outcome at 44 days post-SCI. Methods. A spinal cord contusion (12.5 mm at T-10) was produced in adult rats that had been randomly divided into two groups. Group 1 rats (seven in Experiment 1; 12 in Experiment 2) received hypothermic treatment (epidural temperature 32–33°C) 30 minutes postinjury for 4 hours; Group 2 rats (nine in Experiment 1; eight in Experiment 2) received normothermic treatment (epidural temperature 37°C) 30 minutes postinjury for 4 hours. Blood pressure, blood gas levels, and temperatures (epidural and rectal) were monitored throughout the 4-hour treatment period. Twice weekly assessment of locomotor function was performed over a 6-week survival period by using the Basso-Beattie-Bresnahan locomotor rating scale. Seven (Experiment 1) and 44 (Experiment 2) days after injury, animals were killed, perfused, and their spinal cords were serially sectioned. The area of tissue damage was quantitatively analyzed from 16 longitudinal sections selected from the central core of the spinal cord. Conclusions. The results showed that 1) modest changes in the epidural temperature of the spinal cord can be produced using systemic hypothermia; 2) modest systemic hypothermia (32–33°C) significantly protects against locomotor deficits following traumatic SCI; and 3) modest systemic hypothermia (32–33°C) reduces the area of tissue damage at both 7 and 44 days postinjury. Although additional research is needed to study the therapeutic window and long-term benefits of systemic hypothermia, these data support the possible use of modest systemic hypothermia in the treatment of acute SCI.


2003 ◽  
Vol 98 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chikashi Fukaya ◽  
Yoichi Katayama ◽  
Masahiko Kasai ◽  
Jun Kurihara ◽  
Sadahiro Maejima ◽  
...  

Object. Histopathological studies on spinal cord injury (SCI) have demonstrated time-dependent spread of tissue damage during the initial several hours postinjury. When the long tract within the spinal cord is stimulated, a large monophasic positivity occurs at the injury site. This type of potential, termed the killed-end evoked potential (KEEP), indicates that a nerve impulse approaches but does not pass beyond the injury site. The authors tested the hypothesis that the damage spread can be evaluated as a progressive shift of the KEEP on a real-time basis. The effect of high-dose methylprednisolone sodium succinate (MPSS) on the spread of tissue damage was also examined by this methodology. Methods. The KEEP was recorded using an electrode array placed on the spinal cord at the T-10 level in cats. This electrode array consisted of multiple 0.2-mm-diameter electrodes, each separated by 0.5 mm. Spinal cord injury was induced using a vascular clip (65 g pinching pressure for 30 seconds). The midline posterior surface of the spinal cord was stimulated bipolarly at the C-7 level by applying a single pulse at supramaximal intensity. During the initial period of 6 hours postinjury, the localization of the largest KEEP shifted progressively up to 2.5 mm rostral from the injury site. The amplitude of the KEEP recorded at the injury site decreased to 55 to 70% and became slightly shortened in latency as the localization of the largest KEEP shifted rostrally. These findings imply that the injury site KEEP represents the volume-conducted potential of the largest KEEP at the site of the conduction block. It moved away from the injury site in association with the damage spread, and this was confirmed histopathologically. A decrease in amplitude of KEEP at the injury site appeared to be the most sensitive measure of the damage spread, because the amplitude of the volume-conducted KEEP is inversely proportional to the square of the distance between the recording site and site of conduction block. Administered immediately after SCI, MPSS clearly inhibited these events, especially within 30 minutes postinjury. Conclusions. The KEEP enables sequential evaluation to be made of the time-dependent spread of tissue damage in SCI in the same animal. It is, therefore, useful for detecting the effect of therapeutic interventions and for determining the therapeutic time window. The efficiency of MPSS to inhibit the spread of damaged tissue appeared to be maximized when it was administered within the initial 30-minute period postinjury.


1992 ◽  
Vol 76 (6) ◽  
pp. 967-972 ◽  
Author(s):  
Richard B. North ◽  
Kim Fowler ◽  
Daniel J. Nigrin ◽  
Richard Szymanski

✓ Over the past 20 years, continuing technical advances have rendered spinal cord stimulation an easily implemented low-morbidity technique for the management of chronic intractable pain in properly selected patients. Percutaneous methods for the insertion of arrays of multiple epidural electrodes, which are driven by noninvasively programmable “multichannel” implanted devices, have been among the most important of these technical improvements. The same implanted electronics may be used with peripheral nerve or intracerebral electrodes. If the capabilities of this new hardware are to be used to full advantage, a major investment of time and effort is required to adjust the system postoperatively for optimum effect. Ideally, these adjustments should be based upon psychophysical data, obtained in a manner that minimizes influences such as potential operator bias or stimulus presentation-order effects. These requirements have been met by the development of a computerized system designed for direct patient interaction and for greater ease of operation than the standard external devices used with these implants. The system has been tested clinically in 25 patients with spinal cord stimulation for pain. It rapidly tests the available electrode combinations and stimulus pulse parameters at a rate comparable to or greater than that of a skilled human operator using the standard device. It records detailed graphic data and patient analog ratings at varying thresholds and implements “pain drawing” methods with novel input and analytical techniques. This patient-interactive computerized system has proved to be safe and effective clinically. The time required by the average patient working with this system to adjust the stimulator is comparable to or less than the time required by the same patient working with a physician's assistant. Psychophysical data collected by the system may be correlated with clinical observations. Ongoing development will permit delivery of novel pulse sequences and protocols to assess the mechanisms by which stimulation affords relief from pain.


2005 ◽  
Vol 103 (6) ◽  
pp. 1030-1034 ◽  
Author(s):  
Emma Sillery ◽  
Richard G. Bittar ◽  
Matthew D. Robson ◽  
Timothy E. J. Behrens ◽  
John Stein ◽  
...  

Object. The periventricular gray (PVG) zone and its continuation, the periaqueductal gray (PAG) substance, have been targets for deep brain stimulation (DBS) in the alleviation of intractable pain for longer than two decades. Nevertheless, the anatomical connectivity of this region has been fairly poorly defined. The effects of DBS in this region are probably related to the release of endogenous endorphins, but until the connectivity of this region is better understood the mechanisms will remain unclear. Methods. Diffusion tractography was used to trace the pathways of the PVG—PAG region in seven healthy human volunteers. Images were acquired with the aid of a 1.5-tesla magnetic resonance imaging system. The region of interest was located just lateral to the posterior commissure and extended caudally to the level of the superior colliculus. Probabilistic diffusion tractography was performed from each voxel in each patient's PVG—PAG region. The PVG—PAG region was found to yield descending projections to the spinal cord and cerebellum. Ascending projections to the thalamus and frontal lobes were also observed. Conclusions. These findings suggest that the PVG—PAG region may modulate pain by two mechanisms: one involving the antinociceptive system in the spinal cord and the other involving influences on the central pain network.


1997 ◽  
Vol 86 (6) ◽  
pp. 1007-1011 ◽  
Author(s):  
Yuji Taoka ◽  
Kenji Okajima ◽  
Mitsuhiro Uchiba ◽  
Kazunori Murakami ◽  
Naoaki Harada ◽  
...  

✓ To investigate whether iloprost, a stable analog of prostacyclin, is useful for the prevention of posttraumatic spinal cord injury, we examined its effects on compression trauma—induced spinal cord injury in rats. Spinal cord injury was induced by applying a 20-g weight for 20 minutes to the spinal cord at the level of T-12, resulting in motor disturbances in the hindlimbs. These motor disturbances, evaluated using Tarlov's index, were markedly attenuated in rats with nitrogen mustard—induced leukocytopenia. Administration of iloprost also attenuated the motor deficits. Histological examination revealed that intramedullary hemorrhages observed 24 hours after trauma were significantly attenuated in leukocytopenic animals and in animals that received iloprost. The accumulation of leukocytes at the site of trauma, evaluated by measuring tissue myeloperoxidase activity, significantly increased with time following the trauma, peaking at 3 hours postinjury. Spinal cord myeloperoxidase activity in sham-operated animals did not increase postoperatively. Leukocyte depletion and administration of iloprost reduced the accumulation of leukocytes in the damaged spinal cord segment 3 hours posttrauma. These findings indicate that iloprost attenuates motor disturbances induced by spinal cord trauma and that its therapeutic efficacy can be partly explained by its inhibition of leukocyte accumulation at the traumatized site.


Author(s):  
Deborah L. Benzil ◽  
Mehran Saboori ◽  
Alon Y. Mogilner ◽  
Ronald Rocchio ◽  
Chitti R. Moorthy

Object. The extension of stereotactic radiosurgery treatment of tumors of the spine has the potential to benefit many patients. As in the early days of cranial stereotactic radiosurgery, however, dose-related efficacy and toxicity are not well understood. The authors report their initial experience with stereotactic radiosurgery of the spine with attention to dose, efficacy, and toxicity. Methods. All patients who underwent stereotactic radiosurgery of the spine were treated using the Novalis unit at Westchester Medical Center between December 2001 and January 2004 are included in a database consisting of demographics on disease, dose, outcome, and complications. A total of 31 patients (12 men, 19 women; mean age 61 years, median age 63 years) received treatment for 35 tumors. Tumor types included 26 metastases (12 lung, nine breast, five other) and nine primary tumors (four intradural, five extradural). Thoracic tumors were most common (17 metastases and four primary) followed by lumbar tumors (four metastases and four primary). Lesions were treated to the 85 to 90% isodose line with spinal cord doses being less than 50%. The dose per fraction and total dose were selected on the basis of previous treatment (particularly radiation exposure), size of lesion, and proximity to critical structures. Conclusions. Rapid and significant pain relief was achieved after stereotactic radiosurgery in 32 of 34 treated tumors. In patients treated for metastases, pain was relieved within 72 hours and remained reduced 3 months later. Pain relief was achieved with a single dose as low as 500 cGy. Spinal cord isodoses were less than 50% in all patients except those with intradural tumors (mean single dose to spinal cord 268 cGy and mean total dose to spinal cord 689 cGy). Two patients experienced transient radiculitis (both with a biological equivalent dose (BED) > 60 Gy). One patient who suffered multiple recurrences of a conus ependymoma had permanent neurological deterioration after initial improvement. Pathological evaluation of this lesion at surgery revealed radiation necrosis with some residual/recurrent tumor. No patient experienced other organ toxicity. Stereotactic radiosurgery of the spine is safe at the doses used and provides effective pain relief. In this study, BEDs greater than 60 Gy were associated with an increased risk of radiculitis.


1999 ◽  
Vol 91 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Kenji Ohata ◽  
Toshihiro Takami ◽  
Alaa El-Naggar ◽  
Michiharu Morino ◽  
Akimasa Nishio ◽  
...  

✓ The treatment of spinal intramedullary arteriovenous malformations (AVMs) with a diffuse-type nidus that contains a neural element poses different challenges compared with a glomus-type nidus. The surgical elimination of such lesions involves the risk of spinal cord ischemia that results from coagulation of the feeding artery that, at the same time, supplies cord parenchyma. However, based on evaluation of the risks involved in performing embolization, together with the frequent occurrence of reperfusion, which necessitates frequent reembolization, the authors consider surgery to be a one-stage solution to a disease that otherwise has a very poor prognosis. Magnetic resonance (MR) imaging revealed diffuse-type intramedullary AVMs in the cervical spinal cords of three patients who subsequently underwent surgery via the posterior approach. The AVM was supplied by the anterior spinal artery in one case and by both the anterior and posterior spinal arteries in the other two cases. In all three cases, a posterior median myelotomy was performed up to the vicinity of the anterior median fissure that divided the spinal cord together with the nidus, and the feeding artery was coagulated and severed at its origin from the anterior spinal artery. In the two cases in which the posterior spinal artery fed the AVM, the feeding artery was coagulated on the dorsal surface of the spinal cord. Neurological outcome improved in one patient and deteriorated slightly to mildly in the other two patients. Postoperative angiography demonstrated complete disappearance of the AVM in all cases. Because of the extremely poor prognosis of patients with spinal intramedullary AVMs, this surgical technique for the treatment of diffuse-type AVMs provides acceptable operative outcome. Surgical intervention should be considered when managing a patient with a diffuse-type intramedullary AVM in the cervical spinal cord.


Sign in / Sign up

Export Citation Format

Share Document