Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest

2005 ◽  
Vol 103 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Nicole Petrovich ◽  
Andrei I. Holodny ◽  
Viviane Tabar ◽  
Denise D. Correa ◽  
Joy Hirsch ◽  
...  

Object. The goal of this study was to investigate discordance between the location of speech arrest during awake cortical mapping, a common intraoperative indicator of hemispheric dominance, and silent speech functional magnetic resonance (fMR) imaging maps of frontal language function. Methods. Twenty-one cases were reviewed retrospectively. Images of silent speech fMR imaging activation were coregistered to anatomical MR images obtained for neuronavigation. These were compared with the intraoperative cortical photographs and the behavioral results of electrocorticography during awake craniotomy. An fMR imaging control study of three healthy volunteers was then conducted to characterize the differences between silent and vocalized speech fMR imaging protocols used for neurosurgical planning. Conclusions. Results of fMR imaging showed consistent and predominant activation of the inferior frontal gyrus (IFG) during silent speech tasks. During intraoperative mapping, however, 16 patients arrested in the precentral gyrus (PRG), well posterior to the fMR imaging activity. Of those 16, 14 arrested only in the PRG and not in the IFG as silent speech fMR imaging predicted. The control fMR imaging study showed that vocalized speech fMR imaging shifts the location of the fMR imaging prediction to include the motor strip and may be more appropriate for neurosurgical planning.

2001 ◽  
Vol 95 (5) ◽  
pp. 804-815 ◽  
Author(s):  
Elie Lobel ◽  
Philippe Kahane ◽  
Ute Leonards ◽  
Marie-Hélène Grosbras ◽  
Stéphane Lehéricy ◽  
...  

Object. The goal of this study was to investigate the anatomical localization and functional role of human frontal eye fields (FEFs) by comparing findings from two independently conducted studies. Methods. In the first study, 3-tesla functional magnetic resonance (fMR) imaging was performed in 14 healthy volunteers divided into two groups: the first group executed self-paced voluntary saccades in complete darkness and the second group repeated newly learned or familiar sequences of saccades. In the second study, intracerebral electrical stimulation (IES) was performed in 38 patients with epilepsy prior to surgery, and frontal regions where stimulation induced versive eye movements were identified. These studies showed that two distinct oculomotor areas (OMAs) could be individualized in the region classically corresponding to the FEFs. One OMA was consistently located at the intersection of the superior frontal sulcus with the fundus of the superior portion of the precentral sulcus, and was the OMA in which saccadic eye movements could be the most easily elicited by electrical stimulation. The second OMA was located more laterally, close to the surface of the precentral gyrus. The fMR imaging study and the IES study demonstrated anatomical and stereotactic agreement in the identification of these cortical areas. Conclusions. These findings indicate that infracentimetric localization of cortical areas can be achieved by measuring the vascular signal with the aid of 3-tesla fMR imaging and that neuroimaging and electrophysiological recording can be used together to obtain a better understanding of the human cortical functional anatomy.


2000 ◽  
Vol 93 (2) ◽  
pp. 214-223 ◽  
Author(s):  
Derek L. G. Hill ◽  
Andrew D. Castellano Smith ◽  
Andrew Simmons ◽  
Calvin R. Maurer ◽  
Timothy C. S. Cox ◽  
...  

Object. Several authors have recently reported studies in which they aim to validate functional magnetic resonance (fMR) imaging against the accepted gold standard of invasive electrophysiological monitoring. The authors have conducted a similar study, and in this paper they identify and quantify two characteristics of these data that can make such a comparison problematic.Methods. Eight patients in whom surgery for epilepsy was performed and five healthy volunteers underwent fMR imaging to localize the part of the sensorimotor cortex responsible for hand movement. In the patient group subdural electrode mats were subsequently implanted to identify eloquent regions of the brain and the epileptogenic zone. The fMR imaging data were processed to correct for motion during the study and then registered with a postimplantation computerized tomography (CT) scan on which the electrodes were visible. The motion during imaging in the two groups studied, and the deformation of the brain between the preoperative images and postoperative scans were measured.The patients who underwent epilepsy surgery moved significantly more during fMR imaging experiments than healthy volunteers performing the same motor task. This motion had a particularly increased out-of-plane component and was significantly more correlated with the stimulus than in the volunteers. This motion was especially increased when the patients were performing a task on the side affected by the lesion. The additional motion is hard to correct and substantially degrades the quality of the resulting fMR images, making it a much less reliable technique for use in these patients than in others. Also, the authors found that after electrode implantation, the brain surface can shift more than 10 mm relative to the skull compared with its preoperative location, substantially degrading the accuracy of the comparison of electrophysiological measurements made in the deformed brain and fMR studies obtained preoperatively.Conclusions. These two findings indicate that studies of this sort are currently of limited use for validating fMR imaging and should be interpreted with care. Additional image analysis research is necessary to solve the problems caused by patients' motion and brain deformation.


1998 ◽  
Vol 88 (5) ◽  
pp. 863-869 ◽  
Author(s):  
Jesús Pujol ◽  
Gerardo Conesa ◽  
Joan Deus ◽  
Luis López-Obarrio ◽  
Fabián Isamat ◽  
...  

Object. The authors sought to evaluate the advantages and limitations of functional magnetic resonance (fMR) imaging when it was used regularly in the clinical context to identify the central sulcus. Methods. A 1.5-tesla MR system comprising a spoiled gradient recalled acquisition in the steady-state functional sequence and a cross-hand cancellation analysis method were used to evaluate 50 surgical candidates with centrally located space-occupying lesions in the brain. Three-dimensional (3-D) models of the patient's head and brain showing the relative position of the tumor and the eloquent cortex were obtained in each case. A selective and reproducible focal activation was found, indicating the probable central sulcus position in 41 patients (82%). Direct cortical stimulation confirmed the fMR findings in 100% of 22 intraoperatively assessed patients. Failure to identify the central sulcus occurred in 18% of cases and was mainly a consequence of intrinsic damage in the primary sensorimotor region that resulted in severe hand paresis. Conclusions. Although specific factors were identified that contributed to reduced sensitivity of fMR imaging in the clinical context, the present study supports functional assessment and 3-D representation of specific surgical situations as generally feasible in common practice.


1995 ◽  
Vol 83 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Aina Puce ◽  
R. Todd Constable ◽  
Marie L. Luby ◽  
Gregory McCarthy ◽  
Anna C. Nobre ◽  
...  

✓ Functional magnetic resonance (MR) imaging was performed using a 1.5-tesla MR system to localize sensorimotor cortex. Six neurologically normal subjects were studied by means of axial gradient-echo images with a motor task and one or more sensory tasks: 1) electrical stimulation of the median nerve; 2) continuous brushing over the thenar region; and 3) pulsed flow of compressed air over the palm and digits. An increased MR signal was observed in or near the central sulcus, consistent with the location of primary sensory and motor cortex. Four patients were studied using echo planar imaging sequences and motor and sensory tasks. Three patients had focal refractory seizures secondary to a lesion impinging on sensorimotor cortex. Activation seen on functional MR imaging was coextensive with the location of the sensorimotor area determined by evoked potentials and electrical stimulation. Functional MR imaging provides a useful noninvasive method of localization and functional assessment of sensorimotor cortex.


2002 ◽  
Vol 97 (5) ◽  
pp. 1115-1124 ◽  
Author(s):  
Andrew A. Kanner ◽  
Michael A. Vogelbaum ◽  
Marc R. Mayberg ◽  
Joseph P. Weisenberger ◽  
Gene H. Barnett

Object. Intracranial navigation by using intraoperative magnetic resonance (iMR) imaging allows the surgeon to reassess anatomical relationships in near—real time during brain tumor surgery. The authors report their initial experience with a novel neuronavigation system coupled to a low-field iMR imaging system. Methods. Between October 2000 and December 2001, 70 neurosurgical procedures were performed using the mobile 0.12-tesla PoleStar N-10 iMR imaging system. The cases included 38 craniotomies, 15 brain biopsies, nine transsphenoidal approaches, and one drainage of a subdural hematoma. Tumor resection was performed using the awake method in seven of 38 cases. Of the craniotomies, image-confirmed complete or radical tumor resection was achieved in 28 cases, subtotal resection in eight cases, and open biopsies in two cases. Tumor resection was controlled with the use of image guidance until the final intraoperative images demonstrated that there was no residual tumor or that no critical brain tissue was at risk of compromise. In each stereotactic biopsy the location of the biopsy needle could be verified by intraoperative imaging and diagnostic tissue was obtained. Complications included a case of aseptic meningitis after a biopsy and one case of temporary intraoperative failure of the anesthesia machine. Awake craniotomies were performed successfully with no permanent neurological complications. Conclusions. Intraoperative MR image—based neuronavigation is feasible when using the Odin PoleStar N-10 system for tumor resections that require multiple other surgical adjuncts including awake procedures, cortical mapping, monitoring of somatosensory evoked potentials, or electrocorticography. Use of the system for brain biopsies offers the opportunity of immediate verification of the needle tip location. Standard neurosurgical drills, microscopes, and other equipment can be used safely in conjunction with this iMR imaging system.


1998 ◽  
Vol 89 (5) ◽  
pp. 769-779 ◽  
Author(s):  
Charles J. Hodge ◽  
Sean C. Huckins ◽  
Nikolaus M. Szeverenyi ◽  
Michael M. Fonte ◽  
Jacob G. Dubroff ◽  
...  

Object. Functional magnetic resonance (fMR) imaging was performed in human volunteers to determine the lateral perisylvian cortical areas activated by innocuous cutaneous stimulation. Methods. Eight volunteers who underwent 53 separate experiments form the basis of this report. Eight contiguous coronal slices were obtained using echoplanar fMR imaging techniques while participants were at rest and while somatosensory activation stimuli consisting of vibration or air puffs were delivered to various body areas. The data were analyzed using Student's t-test and cluster analysis to determine significant differences between the resting and activated states. The findings were as follows: the areas in the lateral cortex activated by the sitmuli were the primary sensory cortex (SI), the second somatosensory area (SII), the insula, the superior parietal lobule, and the retroinsular parietal operculum (RIPO). Somatotopy was demonstrable in SI but not in the other areas identified. There was a surprisingly low correlation between the amount of cortex activated in the various areas, which could mean separate inputs and functions for the areas identified. The highest correlation was found between activity in SII and RIPO (0.69). Conclusions. The authors maintain that fMR imaging can be used to identify multiple lateral somatosensory areas in humans. Somatotopy is demonstrated in SI but not in the other lateral cortical sensory areas. The correlations between the amounts of cortex activated in the different lateral sensory areas are low. Recognition of the multiple lateral sensory areas is important both for understanding sensory cortical function and for safe interpretation of studies designed to identify the central sulcus by activating SI.


2005 ◽  
Vol 103 (5) ◽  
pp. 910-916 ◽  
Author(s):  
Yi-Ching Lynn Ho ◽  
Keith Yu-Ching Goh ◽  
Xavier Golay ◽  
Wee-Tin Hong ◽  
Shih-Hui Lim ◽  
...  

✓ Cranially conjoined twins are rare and pose unique challenges in the preoperative evaluation of cerebral language function. The authors report on their experience in the functional magnetic resonance (fMR) imaging evaluation of adult craniopagus (temporoparietooccipital fusion) to evaluate hemispheric language dominance and the eloquent language areas in the preoperative planning stages. Conventional clinical imaging hardware originally designed for individuals was adapted and tailored for use in the twins. They were assigned a selection of language tasks while undergoing fMR imaging. Significant blood oxygen level—dependent activations were detected in the main language regions in each twin, that is, the inferior frontal gyrus (around the Broca area), the middle and superior temporal lobes (around the Wernicke area) together with the inferior parietal lobe, and the middle and superior frontal gyri. Overall, the right-handed twin was strongly left lateralized for language, whereas the left-handed twin showed more bilateral activation during language tasks. Noninvasive language mapping with the aid of fMR imaging has been demonstrated for the first time in total craniopagus.


2001 ◽  
Vol 94 (6) ◽  
pp. 946-954 ◽  
Author(s):  
Alexandre C. Carpentier ◽  
R. Todd Constable ◽  
Michael J. Schlosser ◽  
Alain de Lotbinière ◽  
Joseph M. Piepmeier ◽  
...  

Object. Functional magnetic resonance (fMR) imaging of the motor cortex is a potentially powerful tool in the preoperative planning of surgical procedures in and around the rolandic region. Little is known about the patterns of fMR imaging activation associated with various pathological lesions in that region or their relation to motor skills before surgical intervention. Methods. Twenty-two control volunteers and 44 patients whose pathologies included arteriovenous malformations (AVMs; 16 patients), congenital cortical abnormalities (11 patients), and tumors (17 patients) were studied using fMR imaging and a hand motor task paradigm. Activation maps were constructed for each participant, and changes in position or amplitude of the motor activation on the lesion side were compared with the activation pattern obtained in the contralateral hemisphere. A classification scheme of plasticity (Grades 1–6) based on interhemispheric pixel asymmetry and displacement of activation was used to compare maps between patients, and relative to hand motor dexterity and/or weakness. There was 89.4% interobserver agreement on classification of patterns of fMR imaging activation. Displacement of activation by mass effect was more likely with tumors. Cortical malformations offer a much higher functional reorganization than AVMs or tumors. High-grade plasticity is recruited to compensate for severe motor impairment. Conclusions. Pattern modification of fMR imaging activation can be systematized in a classification of motor cortex plasticity. This classification has shown good correlation among grading, brain lesions, and motor skills. This proposal of a classification scheme, in addition to facilitating data collection and processing from different institutions, is well suited for comparing risks associated with surgical intervention and patterns of functional recovery in relation to preoperative fMR imaging categorization. Such studies are underway at the authors' institution.


1999 ◽  
Vol 91 (6) ◽  
pp. 915-921 ◽  
Author(s):  
Richard G. Bittar ◽  
André Olivier ◽  
Abbas F. Sadikot ◽  
Frederick Andermann ◽  
G. Bruce Pike ◽  
...  

Object. Accurate identification of eloquent cortex is important to ensure that resective surgery in the region surrounding the central sulcus is performed with minimum risk of permanent neurological deficit. Functional localization has traditionally been accomplished using intraoperative cortical stimulation (ICS). However, this technique suffers from several disadvantages that make the development and validation of noninvasive methods desirable. Functional localization accomplished by activation studies in which positron emission tomography (PET) scanning and the tracer [15O]H2O have been used has been shown to correlate well with the results of ICS. Another noninvasive method for functional localization is functional magnetic resonance (fMR) imaging. We compared the locations of activation peaks obtained in individual patients using fMR and [15O]H2O PET imaging.Methods. Twenty-six combined PET activation—fMR imaging studies were performed in 11 patients who were admitted for evaluation before undergoing surgery in the region surrounding the central sulcus. The PET scans were obtained using bolus injections of the cerebral blood flow tracer [15O]H2O (10 mCi). Multislice T2*-weighted gradient-echo echoplanar images were acquired using a 1.5-tesla MR imaging system. Activation maps were aligned with anatomical MR images and transformed into stereotactic space, after which the locations of activation peaks obtained using both modalities were compared. The average distance between activation peaks obtained using fMR imaging and those obtained using PET imaging was 7.9 ± 4.8 mm (p > 0.05), with 96% of the peaks being located on either the same or adjacent sulci and gyri. Overlapping of voxels activated by each modality occurred in 92% of the studies. Functional MR imaging failed to activate the primary sensorimotor cortex in one study and produced results that were ambiguous in the clinical setting in three cases.Conclusions. Overall, fMR imaging produced activation that correlated well with that obtained using PET scanning. Discrepancies between the sites of activation identified using these two techniques may reflect differences in their physiological bases.


2003 ◽  
Vol 99 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Alfredo Quiñones-Hinojosa ◽  
Steven G. Ojemann ◽  
Nader Sanai ◽  
William P. Dillon ◽  
Mitchel S. Berger

Object. Broca identified the posterior third of the inferior frontal gyrus as a locus essential for the production of fluent speech. The authors have conducted this retrospective analysis in an attempt to find readily identifiable landmarks on magnetic resonance (MR) imaging that correspond to intraoperative cortical stimulation-induced speech arrest. These landmarks demonstrate novel structural—functional relationships that can be used preoperatively to predict the location of the Broca area. Methods. Using a neuronavigation system, sites where stimulation produced speech arrest (Broca area) were recorded in a consecutive series of patients undergoing awake tumor resections in the perisylvian territory of the dominant hemisphere. The authors reviewed 33 consecutive patients by projecting the MR imaging data sets and marking the site where the Broca area was identified. Sulcus topography was analyzed with respect to this site by scrolling into neighboring planes and classifying the frontal operculum into one of the four schemes of sulcus variability described by Ebeling, et al. The following categories of frontal opercula were found: 18 (69%) of 26 were Type I, eight (31%) of 26 were Type III, and seven cases eluded classification because of sulcal effacement. For patients with Type I anatomy, the Broca area was adjacent to, and distributed evenly around, the inferior precentral sulcus (IPS). Quantitatively, the site of speech arrest was located a mean of 2.4 ± 0.25 cm from the anteroinferior aspect of the pars opercularis, where it abuts the subarachnoid space surrounding the apex of the pars triangularis. For all patients with Type III anatomy, the Broca area was adjacent to the accessory sulcus that lies immediately posterior to the IPS. In these patients the mean distance from the anterior inferior pars opercularis was 2.3 ± 0.29 cm. The mean distance from the Broca area to the edge of the tumor for the 26 patients with clear sulcal anatomy was 1.29 ± 0.12 cm. Conclusions. The results indicate a correlation between the structure of the frontal operculum as seen on MR imaging and the functional localization of speech arrest in the dominant hemisphere. Additionally, sulcal landmarks that can be used preoperatively to predict the location of the Broca area within the inferior frontal gyrus are described based on the patient population. This information will allow the surgeon to determine if an awake craniotomy is necessary to identify the Broca area when planning a surgical procedure near the dominant frontal operculum.


Sign in / Sign up

Export Citation Format

Share Document