Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings

2000 ◽  
Vol 93 (2) ◽  
pp. 214-223 ◽  
Author(s):  
Derek L. G. Hill ◽  
Andrew D. Castellano Smith ◽  
Andrew Simmons ◽  
Calvin R. Maurer ◽  
Timothy C. S. Cox ◽  
...  

Object. Several authors have recently reported studies in which they aim to validate functional magnetic resonance (fMR) imaging against the accepted gold standard of invasive electrophysiological monitoring. The authors have conducted a similar study, and in this paper they identify and quantify two characteristics of these data that can make such a comparison problematic.Methods. Eight patients in whom surgery for epilepsy was performed and five healthy volunteers underwent fMR imaging to localize the part of the sensorimotor cortex responsible for hand movement. In the patient group subdural electrode mats were subsequently implanted to identify eloquent regions of the brain and the epileptogenic zone. The fMR imaging data were processed to correct for motion during the study and then registered with a postimplantation computerized tomography (CT) scan on which the electrodes were visible. The motion during imaging in the two groups studied, and the deformation of the brain between the preoperative images and postoperative scans were measured.The patients who underwent epilepsy surgery moved significantly more during fMR imaging experiments than healthy volunteers performing the same motor task. This motion had a particularly increased out-of-plane component and was significantly more correlated with the stimulus than in the volunteers. This motion was especially increased when the patients were performing a task on the side affected by the lesion. The additional motion is hard to correct and substantially degrades the quality of the resulting fMR images, making it a much less reliable technique for use in these patients than in others. Also, the authors found that after electrode implantation, the brain surface can shift more than 10 mm relative to the skull compared with its preoperative location, substantially degrading the accuracy of the comparison of electrophysiological measurements made in the deformed brain and fMR studies obtained preoperatively.Conclusions. These two findings indicate that studies of this sort are currently of limited use for validating fMR imaging and should be interpreted with care. Additional image analysis research is necessary to solve the problems caused by patients' motion and brain deformation.

2000 ◽  
Vol 93 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Henry W. S. Schroeder ◽  
Christiane Schweim ◽  
Klaus H. Schweim ◽  
Michael R. Gaab

Object. The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.Methods. In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.Conclusions. Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.


1998 ◽  
Vol 88 (5) ◽  
pp. 863-869 ◽  
Author(s):  
Jesús Pujol ◽  
Gerardo Conesa ◽  
Joan Deus ◽  
Luis López-Obarrio ◽  
Fabián Isamat ◽  
...  

Object. The authors sought to evaluate the advantages and limitations of functional magnetic resonance (fMR) imaging when it was used regularly in the clinical context to identify the central sulcus. Methods. A 1.5-tesla MR system comprising a spoiled gradient recalled acquisition in the steady-state functional sequence and a cross-hand cancellation analysis method were used to evaluate 50 surgical candidates with centrally located space-occupying lesions in the brain. Three-dimensional (3-D) models of the patient's head and brain showing the relative position of the tumor and the eloquent cortex were obtained in each case. A selective and reproducible focal activation was found, indicating the probable central sulcus position in 41 patients (82%). Direct cortical stimulation confirmed the fMR findings in 100% of 22 intraoperatively assessed patients. Failure to identify the central sulcus occurred in 18% of cases and was mainly a consequence of intrinsic damage in the primary sensorimotor region that resulted in severe hand paresis. Conclusions. Although specific factors were identified that contributed to reduced sensitivity of fMR imaging in the clinical context, the present study supports functional assessment and 3-D representation of specific surgical situations as generally feasible in common practice.


2001 ◽  
Vol 94 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Atsuko Harada ◽  
Yukihiko Fujii ◽  
Yuichiro Yoneoka ◽  
Shigekazu Takeuchi ◽  
Ryuichi Tanaka ◽  
...  

Object. The purpose of this study was to assess the utility of high-field magnetic resonance (MR) imaging as a quantitative tool for estimating cerebral circulation in patients with moyamoya disease. Methods. Eighteen patients with moyamoya disease who were scheduled to undergo revascularization surgery and 100 healthy volunteers were examined using T2-reversed MR imaging performed using a 3-tesla system. Ten of the 18 patients underwent a second study between 1 year and 3 years after revascularization. Magnetic resonance images obtained in the patients with moyamoya disease were statistically analyzed and compared with those obtained in healthy volunteers. The MR imaging findings were also correlated with results of single-photon emission computerized tomography and conventional cerebral angiography studies. Transverse lines in the white matter (medullary streaks) were observed in almost all persons. In healthy volunteers, the diameter sizes of the medullary streaks increased significantly with age (p < 0.001). Multiple logistic regression analysis revealed that age-adjusted medullary streak diameters were significantly larger in patients with moyamoya disease (p < 0.001). Diameter sizes also increased significantly with the increased severity of cerebral hypoperfusion (p < 0.001) and a higher angiographically determined stage of the disease (p < 0.001). Diameter sizes decreased significantly after surgery (p < 0.001). Conclusions. The increases in medullary streak diameters observed in patients with moyamoya disease appear to represent vessels dilated due to cerebral hypoperfusion. High-field T2-reversed MR imaging is useful in estimating cerebral circulation in patients with moyamoya disease.


2005 ◽  
Vol 103 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Nicole Petrovich ◽  
Andrei I. Holodny ◽  
Viviane Tabar ◽  
Denise D. Correa ◽  
Joy Hirsch ◽  
...  

Object. The goal of this study was to investigate discordance between the location of speech arrest during awake cortical mapping, a common intraoperative indicator of hemispheric dominance, and silent speech functional magnetic resonance (fMR) imaging maps of frontal language function. Methods. Twenty-one cases were reviewed retrospectively. Images of silent speech fMR imaging activation were coregistered to anatomical MR images obtained for neuronavigation. These were compared with the intraoperative cortical photographs and the behavioral results of electrocorticography during awake craniotomy. An fMR imaging control study of three healthy volunteers was then conducted to characterize the differences between silent and vocalized speech fMR imaging protocols used for neurosurgical planning. Conclusions. Results of fMR imaging showed consistent and predominant activation of the inferior frontal gyrus (IFG) during silent speech tasks. During intraoperative mapping, however, 16 patients arrested in the precentral gyrus (PRG), well posterior to the fMR imaging activity. Of those 16, 14 arrested only in the PRG and not in the IFG as silent speech fMR imaging predicted. The control fMR imaging study showed that vocalized speech fMR imaging shifts the location of the fMR imaging prediction to include the motor strip and may be more appropriate for neurosurgical planning.


2001 ◽  
Vol 95 (5) ◽  
pp. 804-815 ◽  
Author(s):  
Elie Lobel ◽  
Philippe Kahane ◽  
Ute Leonards ◽  
Marie-Hélène Grosbras ◽  
Stéphane Lehéricy ◽  
...  

Object. The goal of this study was to investigate the anatomical localization and functional role of human frontal eye fields (FEFs) by comparing findings from two independently conducted studies. Methods. In the first study, 3-tesla functional magnetic resonance (fMR) imaging was performed in 14 healthy volunteers divided into two groups: the first group executed self-paced voluntary saccades in complete darkness and the second group repeated newly learned or familiar sequences of saccades. In the second study, intracerebral electrical stimulation (IES) was performed in 38 patients with epilepsy prior to surgery, and frontal regions where stimulation induced versive eye movements were identified. These studies showed that two distinct oculomotor areas (OMAs) could be individualized in the region classically corresponding to the FEFs. One OMA was consistently located at the intersection of the superior frontal sulcus with the fundus of the superior portion of the precentral sulcus, and was the OMA in which saccadic eye movements could be the most easily elicited by electrical stimulation. The second OMA was located more laterally, close to the surface of the precentral gyrus. The fMR imaging study and the IES study demonstrated anatomical and stereotactic agreement in the identification of these cortical areas. Conclusions. These findings indicate that infracentimetric localization of cortical areas can be achieved by measuring the vascular signal with the aid of 3-tesla fMR imaging and that neuroimaging and electrophysiological recording can be used together to obtain a better understanding of the human cortical functional anatomy.


1991 ◽  
Vol 75 (4) ◽  
pp. 512-524 ◽  
Author(s):  
L. Dade Lunsford ◽  
Douglas Kondziolka ◽  
John C. Flickinger ◽  
David J. Bissonette ◽  
Charles A. Jungreis ◽  
...  

✓ Stereotactic radiosurgery successfully obliterates carefully selected arteriovenous malformations (AVM's) of the brain. In an initial 3-year experience using the 201-source cobalt-60 gamma knife at the University of Pittsburgh, 227 patients with AVM's were treated. Symptoms at presentation included prior hemorrhage in 143 patients (63%), headache in 104 (46%), and seizures in 70 (31%). Neurological deficits were present in 102 patients (45%). Prior surgical resection (resulting in subtotal removal) had been performed in 36 patients (16%). In 47 selected patients (21%), embolization procedures were performed in an attempt to reduce the AVM size prior to radiosurgery. The lesions were classified according to the Spetzler grading system: 64 (28%) were Grade VI (inoperable), 22 (10%) were Grade IV, 90 (40%) were Grade III, 43 (19%) were Grade II, and eight (4%) were Grade I. With the aid of computer imaging-integrated isodose plans for single-treatment irradiation, total coverage of the AVM nidus was possible in 216 patients (95%). The location and volume of the AVM were the most important factors for the selection of radiation dose. Magnetic resonance (MR) imaging was performed at 6-month intervals in 161 patients. Seventeen patients who had MR evidence of complete obliteration underwent angiography within 3 months of imaging: in 14 (82%) complete obliteration was confirmed. Complete angiographic obliteration was confirmed in 37 (80%) of 46 patients at 2 years, the earliest confirmation being 4 months (mean 17 months) after radiosurgery. The 2-year obliteration rates according to volume were: all eight (100%) AVM's less than 1 cu cm; 22 (85%) of 26 AVM's of 1 to 4 cu cm; and seven (58%) of 12 AVM's greater than 4 cu cm. Magnetic resonance imaging revealed postirradiation changes in 38 (24%) of 161 patients at a mean interval of 10.2 months after radiosurgery; only 10 (26%) of those 38 patients were symptomatic. In the entire series, two patients developed permanent new neurological deficits believed to be treatment-related. Two patients died of repeat hemorrhage at 6 and 23 months after treatment during the latency interval prior to obliteration. Stereotactic radiosurgery is an important method to obliterate AVM's, especially those previously considered inoperable. Success and complication risks are related to the AVM location and the volume treated.


1995 ◽  
Vol 83 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Aina Puce ◽  
R. Todd Constable ◽  
Marie L. Luby ◽  
Gregory McCarthy ◽  
Anna C. Nobre ◽  
...  

✓ Functional magnetic resonance (MR) imaging was performed using a 1.5-tesla MR system to localize sensorimotor cortex. Six neurologically normal subjects were studied by means of axial gradient-echo images with a motor task and one or more sensory tasks: 1) electrical stimulation of the median nerve; 2) continuous brushing over the thenar region; and 3) pulsed flow of compressed air over the palm and digits. An increased MR signal was observed in or near the central sulcus, consistent with the location of primary sensory and motor cortex. Four patients were studied using echo planar imaging sequences and motor and sensory tasks. Three patients had focal refractory seizures secondary to a lesion impinging on sensorimotor cortex. Activation seen on functional MR imaging was coextensive with the location of the sensorimotor area determined by evoked potentials and electrical stimulation. Functional MR imaging provides a useful noninvasive method of localization and functional assessment of sensorimotor cortex.


2000 ◽  
Vol 93 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Hans-Ekkehart Vitzthum ◽  
Alexander König ◽  
Volker Seifert

Object. The aim of this study was to determine the relationship of different structures of the lower lumbar spine during interventional movement examination. Methods. Clinically healthy volunteers and patients suffering from degenerative disorders of the lumbar spine underwent vertical, open magnetic resonance (MR) imaging (0.5 tesla). Three functional patterns of lumbar spine motion were identified in 50 healthy volunteers, (average age 25 years). The authors identified characteristic angles of the facet joints, as measured in the frontal plane. In 50 patients with degenerative disorders of the lumbar spine (41 with disc herniation, five with osteogenic spinal stenosis, and four with degenerative spondylolisthesis) the range of rotation was increased in the relevant spinal segments. Signs of neural compression were increased under motion. Conclusions. Dynamic examination in which vertical, open MR imaging is used demonstrated that the extent of neural compression as well as the increasing range of rotation are important signs of segmental instability.


1998 ◽  
Vol 89 (5) ◽  
pp. 769-779 ◽  
Author(s):  
Charles J. Hodge ◽  
Sean C. Huckins ◽  
Nikolaus M. Szeverenyi ◽  
Michael M. Fonte ◽  
Jacob G. Dubroff ◽  
...  

Object. Functional magnetic resonance (fMR) imaging was performed in human volunteers to determine the lateral perisylvian cortical areas activated by innocuous cutaneous stimulation. Methods. Eight volunteers who underwent 53 separate experiments form the basis of this report. Eight contiguous coronal slices were obtained using echoplanar fMR imaging techniques while participants were at rest and while somatosensory activation stimuli consisting of vibration or air puffs were delivered to various body areas. The data were analyzed using Student's t-test and cluster analysis to determine significant differences between the resting and activated states. The findings were as follows: the areas in the lateral cortex activated by the sitmuli were the primary sensory cortex (SI), the second somatosensory area (SII), the insula, the superior parietal lobule, and the retroinsular parietal operculum (RIPO). Somatotopy was demonstrable in SI but not in the other areas identified. There was a surprisingly low correlation between the amount of cortex activated in the various areas, which could mean separate inputs and functions for the areas identified. The highest correlation was found between activity in SII and RIPO (0.69). Conclusions. The authors maintain that fMR imaging can be used to identify multiple lateral somatosensory areas in humans. Somatotopy is demonstrated in SI but not in the other lateral cortical sensory areas. The correlations between the amounts of cortex activated in the different lateral sensory areas are low. Recognition of the multiple lateral sensory areas is important both for understanding sensory cortical function and for safe interpretation of studies designed to identify the central sulcus by activating SI.


1997 ◽  
Vol 87 (4) ◽  
pp. 525-534 ◽  
Author(s):  
Lawrence L. Wald ◽  
Sarah J. Nelson ◽  
Mark R. Day ◽  
Susan E. Noworolski ◽  
Roland G. Henry ◽  
...  

✓ The utility of three-dimensional (3-D) proton magnetic resonance spectroscopy (1H-MRS) imaging for detecting metabolic changes after brain tumor therapy was assessed in a serial study of 58 total examinations of 12 patients with glioblastoma multiforme (GBM) who received brachytherapy. Individual proton spectra from the 3-D array of spectra encompassing the lesion showed dramatic differences in spectral patterns indicative of radiation necrosis, recurrent or residual tumor, or normal brain. The 1H-MRS imaging data demonstrated significant differences between suspected residual or recurrent tumor and contrast-enhancing radiation-induced necrosis. Regions of abnormally high choline (Cho) levels, consistent with viable tumor, were detected beyond the regions of contrast enhancement for all 12 gliomas. Changes in the serial 1H-MRS imaging data were observed, reflecting an altered metabolism following treatment. These changes included the significant reduction in Cho levels after therapy, indicating the transformation of tumor to necrotic tissue. For patients who demonstrated subsequent clinical progression, an increase in Cho levels was observed in regions that previously appeared either normal or necrotic. Several patients showed regional variations in response to brachytherapy as evaluated by 1H-MRS imaging. This study demonstrates the potential of noninvasive 3-D 1H-MRS imaging to discriminate between the formation of contrast-enhancing radiation necrosis and residual or recurrent tumor following brachytherapy. This modality may also allow better definition of tumor extent prior to brachytherapy by detecting the presence of abnormal metabolite levels in nonenhancing regions of solid tumor.


Sign in / Sign up

Export Citation Format

Share Document