Factors involved in long-term efficacy of deep brain stimulation of the thalamus for essential tremor

2008 ◽  
Vol 109 (4) ◽  
pp. 640-646 ◽  
Author(s):  
Julie G. Pilitsis ◽  
Leo Verhagen Metman ◽  
John R. Toleikis ◽  
Lindsay E. Hughes ◽  
Sepehr B. Sani ◽  
...  

Object Although nucleus ventralis intermedius stimulation has been shown to be safe and efficacious in the treatment of essential tremor, there is a subset of patients who eventually lose benefit from their stimulation. Proposed causes for this phenomenon include tolerance, disease progression, and suboptimal location. The goal of this study was to assess the factors that may lead to both stimulation failure, defined as loss of meaningful tremor relief, and less satisfactory outcomes, defined as leads requiring voltages > 3.6 V for effective tremor control. Methods The authors present their clinical outcomes from 31 leads in 27 patients who had effective tremor control for > 1 year following nucleus ventralis intermedius stimulation. All patients postoperatively had a mean decrease in both the writing and drawing subscales of the Fahn-Tolosa-Marin Tremor Rating Scale (p < 0.001). Results After a mean follow-up of 40 months, 22 patients continued to have tremor control with stimulation. Four patients eventually lost efficacy of their stimulation at a mean of 39 months. There was no difference in age, duration of disease, or disease severity between the groups. Examination of perioperative factors revealed that suboptimal anteroposterior positioning as evidenced on intraoperative fluoroscopy occurred significantly more frequently in patients with stimulation failure (p = 0.018). In patients with less satisfactory outcomes, no difference was seen between group demographics. Fluoroscopy again revealed suboptimal positioning more frequently in these patients (p = 0.005). Conclusions This study provides further evidence that suboptimal lead position in combination with disease progression or tolerance may result in less satisfactory long-term outcomes.

Neurology ◽  
2020 ◽  
Vol 94 (10) ◽  
pp. e1073-e1084 ◽  
Author(s):  
Takashi Tsuboi ◽  
Zakia Jabarkheel ◽  
Pamela R. Zeilman ◽  
Matthew J. Barabas ◽  
Kelly D. Foote ◽  
...  

ObjectiveTo assess longitudinal tremor outcomes with ventral intermediate nucleus deep brain stimulation (VIM DBS) in patients with dystonic tremor (DT) and to compare with DBS outcomes in essential tremor (ET).MethodsWe retrospectively investigated VIM DBS outcomes for 163 patients followed at our center diagnosed with either DT or ET. The Fahn-Tolosa-Marin tremor rating scale (TRS) was used to assess change in tremor and activities of daily living (ADL) at 6 months, 1 year, 2–3 years, 4–5 years, and ≥6 years after surgery.ResultsTwenty-six patients with DT and 97 patients with ET were analyzed. Compared to preoperative baseline, there were significant improvements in TRS motor up to 4–5 years (52.2%; p = 0.032) but this did not reach statistical significance at ≥6 years (46.0%, p = 0.063) in DT, which was comparable to the outcomes in ET. While the improvements in the upper extremity tremor, head tremor, and axial tremor were also comparable between DT and ET throughout the follow-up, the ADL improvements in DT were lost at 2–3 years follow-up.ConclusionOverall, tremor control with VIM DBS in DT and ET was comparable and remained sustained at long term likely related to intervention at the final common node in the pathologic tremor network. However, the long-term ADL improvements in DT were not sustained, possibly due to inadequate control of concomitant dystonia symptoms. These findings from a large cohort of DT indicate that VIM targeting is reasonable if the tremor is considerably more disabling than the dystonic features.Classification of evidenceThis study provides Class IV evidence that VIM DBS improves tremor in patients with DT or ET.


Neurosurgery ◽  
2012 ◽  
Vol 71 (2) ◽  
pp. 325-330 ◽  
Author(s):  
Leslie C. Markun ◽  
Philip A. Starr ◽  
Ellen L. Air ◽  
William J. Marks ◽  
Monica M. Volz ◽  
...  

Abstract BACKGROUND: Treatment with deep brain stimulation (DBS) of the globus pallidus internus in children with DYT1 primary torsion dystonia is highly effective; however, individual response to stimulation is variable, and a greater understanding of predictors of long-term outcome is needed. OBJECTIVE: To report the long-term outcomes of subjects with young-onset DYT1 primary torsion dystonia treated with bilateral globus pallidus DBS. METHODS: Fourteen subjects (7 male, 7 female) treated consecutively from 2000 to 2010 at our center were included in this retrospective study. The Burke-Fahn-Marsden Dystonia Rating Scale was performed at baseline and at 1, 2, and up to 6 years postoperatively. RESULTS: Pallidal DBS was well tolerated and highly effective, with mean Burke-Fahn-Marsden Dystonia Rating Scale movement scores improving from baseline by 61.5% (P &lt; .001) at 1 year, 64.4% (P &lt; .001) at 2 years, and 70.3% (P &lt; .001) at the final follow-up visit (mean, 32 months; range, 7–77 months). Disability scores also improved significantly. Multiple linear regression analysis revealed a significant influence of duration of disease as a predictor of percent improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement score at long-term follow-up (duration of disease, P &lt; .05). Subjects with fixed orthopedic deformities (4) had less improvement in these regions. Location of the active DBS electrode used at final follow-up visit was not predictive of clinical outcome. CONCLUSION: Our findings highlight the sustained benefit from DBS and the importance of early referral for DBS in children with medically refractory DYT1 primary torsion dystonia, which can lead to improved long-term benefits.


Neurology ◽  
2017 ◽  
Vol 89 (13) ◽  
pp. 1416-1423 ◽  
Author(s):  
Rubens Gisbert Cury ◽  
Valerie Fraix ◽  
Anna Castrioto ◽  
Maricely Ambar Pérez Fernández ◽  
Paul Krack ◽  
...  

Objective:To report on the long-term outcomes of deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) in Parkinson disease (PD), essential tremor (ET), and dystonic tremor.Methods:One hundred fifty-nine patients with PD, ET, and dystonia underwent VIM DBS due to refractory tremor at the Grenoble University Hospital. The primary outcome was a change in the tremor scores at 1 year after surgery and at the latest follow-up (21 years). Secondary outcomes included the relationship between tremor score reduction over time and the active contact position. Tremor scores (Unified Parkinson's Disease Rating Scale-III, items 20 and 21; Fahn, Tolosa, Marin Tremor Rating Scale) and the coordinates of the active contacts were recorded.Results:Ninety-eight patients were included. Patients with PD and ET had sustained improvement in tremor with VIM stimulation (mean improvement, 70% and 66% at 1 year; 63% and 48% beyond 10 years, respectively; p < 0.05). There was no significant loss of stimulation benefit over time (p > 0.05). Patients with dystonia exhibited a moderate response at 1-year follow-up (41% tremor improvement, p = 0.027), which was not sustained after 5 years (30% improvement, p = 0.109). The more dorsal active contacts' coordinates in the right lead were related to a better outcome 1 year after surgery (p = 0.029). During the whole follow-up, forty-eight patients (49%) experienced minor side effects, whereas 2 (2.0%) had serious events (brain hemorrhage and infection).Conclusions:VIM DBS is an effective long-term (beyond 10 years) treatment for tremor in PD and ET. Effects on dystonic tremor were modest and transient.Classification of evidence:This provides Class IV evidence. It is an observational study.


2012 ◽  
Vol 117 (1) ◽  
pp. 156-161 ◽  
Author(s):  
Jules M. Nazzaro ◽  
Rajesh Pahwa ◽  
Kelly E. Lyons

Object The goal of this study was to evaluate short- and long-term benefits in quality of life (QOL) after unilateral deep brain stimulation (DBS) for essential tremor (ET). Methods Patients who received unilateral DBS of the ventral intermediate nucleus of the thalamus between 1997 and 2010 and who had at least 1 follow-up evaluation at least 1 year after surgery were included. Their QOL was assessed with the Parkinson Disease Questionnaire-39 (PDQ-39), and ET was measured with the Fahn-Tolosa-Marin tremor rating scale (TRS) prior to surgery and then postoperatively with the stimulation in the on mode. Results Ninety-one patients (78 at 1 year; 42 at 2–7 years [mean 4 years]; and 22 at > 7–12 years [mean 9 years]) were included in the analysis. The TRS total, targeted tremor, and activities of daily living (ADL) scores were significantly improved compared with presurgical scores up to 12 years. The PDQ-39 ADL, emotional well-being, stigma, and total scores were significantly improved up to 7 years after surgery compared with presurgical scores. At the longest follow-up, only the PDQ-39 stigma score was significantly improved, and the PDQ-39 mobility score was significantly worsened. Conclusions Unilateral thalamic stimulation significantly reduces ET and improves ADL scores for up to 12 years after surgery, as measured by the TRS. The PDQ-39 total score and the domains of ADL, emotional well-being, and stigma were significantly improved up to 7 years. Although scores were improved compared with presurgery, other than stigma, these benefits did not remain significant at the longest (up to 12 years) follow-up, probably related in part to changes due to aging and comorbidities.


2011 ◽  
Vol 83 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Anders Fytagoridis ◽  
Ulrika Sandvik ◽  
Mattias Åström ◽  
Tommy Bergenheim ◽  
Patric Blomstedt

2020 ◽  
Vol 133 (3) ◽  
pp. 830-838 ◽  
Author(s):  
Andrea Franzini ◽  
Giuseppe Messina ◽  
Vincenzo Levi ◽  
Antonio D’Ammando ◽  
Roberto Cordella ◽  
...  

OBJECTIVECentral poststroke neuropathic pain is a debilitating syndrome that is often resistant to medical therapies. Surgical measures include motor cortex stimulation and deep brain stimulation (DBS), which have been used to relieve pain. The aim of this study was to retrospectively assess the safety and long-term efficacy of DBS of the posterior limb of the internal capsule for relieving central poststroke neuropathic pain and associated spasticity affecting the lower limb.METHODSClinical and surgical data were retrospectively collected and analyzed in all patients who had undergone DBS of the posterior limb of the internal capsule to address central poststroke neuropathic pain refractory to conservative measures. In addition, long-term pain intensity and level of satisfaction gained from stimulation were assessed. Pain was evaluated using the visual analog scale (VAS). Information on gait improvement was obtained from medical records, neurological examination, and interview.RESULTSFour patients have undergone the procedure since 2001. No mortality or morbidity related to the surgery was recorded. In three patients, stimulation of the posterior limb of the internal capsule resulted in long-term pain relief; in a fourth patient, the procedure failed to produce any long-lasting positive effect. Two patients obtained a reduction in spasticity and improved motor capability. Before surgery, the mean VAS score was 9 (range 8–10). In the immediate postoperative period and within 1 week after the DBS system had been turned on, the mean VAS score was significantly lower at a mean of 3 (range 0–6). After a mean follow-up of 5.88 years, the mean VAS score was still reduced at 5.5 (range 3–8). The mean percentage of long-term pain reduction was 38.13%.CONCLUSIONSThis series suggests that stimulation of the posterior limb of the internal capsule is safe and effective in treating patients with chronic neuropathic pain affecting the lower limb. The procedure may be a more targeted treatment method than motor cortex stimulation or other neuromodulation techniques in the subset of patients whose pain and spasticity are referred to the lower limbs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohit Agrawal ◽  
Kanwaljeet Garg ◽  
Raghu Samala ◽  
Roopa Rajan ◽  
Vikas Naik ◽  
...  

Background: Magnetic resonance guided focused ultrasound (MRgFUS) is a relatively novel technique to treat essential tremor (ET). The objective of this review was to analyze the efficacy and the safety profile of MRgFUS for ET.Methods: A systematic literature review was done. The post procedure changes in the Clinical Rating Scale for Tremor (CRST) score, hand score, disability and quality of life scores were analyzed.Results: We found 29 studies evaluating 617 patients. DTI based targeting was utilized in six cohorts. A significant difference was observed in the pooled standard mean difference between the pre and postoperative total CRST score (p-value &lt; 0.001 and 0.0002), hand score (p-value 0.03 and 0.02); and the disability at 12 months (p-value 0.01). Head pain and dizziness were the most in procedure complications. The immediate pooled proportion of ataxia was 50%, while it was 20% for sensory complications, which, respectively, declined to 31 and 13% on long term follow up. A significant reduction (p = 0.03) in immediate ataxia related complications was seen with DTI targeting.Conclusion: MRgFUS for ET seems to be an effective procedure for relieving unilateral tremor. Use of DTI based targeting revealed a significant reduction in post procedure ataxia related complications as compared to traditional targeting techniques. Analysis of other complications further revealed a decreasing trend on follow up.


2021 ◽  
pp. 1-9
Author(s):  
Melanie A. Morrison ◽  
Anthony T. Lee ◽  
Alastair J. Martin ◽  
Cameron Dietiker ◽  
Ethan G. Brown ◽  
...  

OBJECTIVEDirect visualization of the ventral intermediate nucleus (VIM) of the thalamus on standard MRI sequences remains elusive. Therefore, deep brain stimulation (DBS) surgery for essential tremor (ET) indirectly targets the VIM using atlas-derived consensus coordinates and requires awake intraoperative testing to confirm clinical benefits. The objective of this study was to evaluate the utility of proton density (PD)–weighted MRI and tractography of the intersecting dentato-rubro-thalamic tract (DRTT) for direct “intersectional” targeting of the VIM in ET.METHODSDBS targets were selected by identifying the VIM on PD-weighted images relative to the DRTT in 2 patients with ET. Tremor reduction was confirmed with intraoperative clinical testing. Intended target coordinates based on the direct intersectional targeting technique were compared with consensus coordinates obtained with indirect targeting. Pre- and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS).RESULTSPlanned DBS coordinates based on direct versus indirect targeting of the VIM differed in both the anteroposterior (range 0 to 2.3) and lateral (range −0.7 to 1) directions. For 1 patient, indirect targeting—without PD-weighted visualization of the VIM and DRTT—would have likely resulted in suboptimal electrode placement within the VIM. At the 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (case 1: 68%, case 2: 72%).CONCLUSIONSDirect intersectional targeting of the VIM using PD-weighted imaging and DRTT tractography is a feasible method for DBS placement in patients with ET. These advanced targeting techniques can supplement awake intraoperative testing or be used independently in asleep cases to improve surgical efficiency and confidence.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 957-963 ◽  
Author(s):  
Francesco Cacciola ◽  
Jibril Osman Farah ◽  
Paul R Eldridge ◽  
Patricia Byrne ◽  
Telekath K Varma

Abstract BACKGROUND: Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) was shown to be effective in cervical dystonia refractory to medical treatment in several small short-term and 1 long-term follow-up series. Optimal stimulation parameters and their repercussions on the cost/benefit ratio still need to be established. OBJECTIVE: To report our long-term outcome with bilateral GPi deep brain stimulation in cervical dystonia. METHODS: The Toronto Western Spasmodic Torticollis Rating Scale was evaluated in 10 consecutive patients preoperatively and at last follow-up. The relationship of improvement in postural severity and pain was analyzed and stimulation parameters noted and compared with those in a similar series in the literature. RESULTS: The mean (standard deviation) follow-up was 37.6 (16.9) months. Improvement in the total Toronto Western Spasmodic Torticollis Rating Scale score as evaluated at latest follow-up was 68.1% (95% confidence interval: 51.5-84.6). In 4 patients, there was dissociation between posture severity and pain improvement. Prevalently bipolar stimulation settings and high pulse widths and amplitudes led to excellent results at the expense of battery life. CONCLUSION: Improvement in all 3 subscale scores of the Toronto Western Spasmodic Torticollis Rating Scale with bilateral GPi deep brain stimulation seems to be the rule. Refinement of stimulation parameters might have a significant impact on the cost/benefit ratio of the treatment. The dissociation of improvement in posture severity and pain provides tangible evidence of the complex nature of cervical dystonia and offers interesting insight into the complex functional organization of the GPi.


Sign in / Sign up

Export Citation Format

Share Document