scholarly journals INCREASING OIL RECOVERY APPLYING ELECTRIC STIMULATION ON THE FORMATION

2021 ◽  
Author(s):  
Bahshillo Akramov ◽  
◽  
Sherali Umedov ◽  
Odiljon Khaitov ◽  
Jaloliddin Nuriddinov ◽  
...  

The work is devoted to increasing the degree of depletion of reserves of longterm exploited hydrocarbon deposits on the basis of the obtained results of theoretical and experimental studies of the application of electrodynamic technologies for stimulating the formation and bottomhole formation zone. The electrolysis of formation fluids, water, oil-bearing rocks, is accompanied by a mass transfer, primary and secondary chemical reactions, the formation of all kinds of salts, alkalis and acids, new organic substances and all kinds of surfactants. Not only the liquid is subjected to electrolysis, but also the oil and gas bearing rocks themselves (solid electrolyte). The magnetic and electrical forces arising during the electric treatment of reservoirs make it possible to effectively drain heterogeneous reservoirs and extract residual oil from non-working layers. The work also carried out experiments to study the effect of the electric field on the surface tension coefficient at the oil-water interface. The circumstance of an abrupt change in the surface tension coefficient at the oil-water interface makes it possible in principle to create conditions in the reservoir that make it possible to slow down the cusping processes by applying an electric field of various magnitudes or, in other words, by regulating the amount of mass transfer. In numerical terms, the oil recovery factor without electrophysical treatment was 52.94%. Under electrophysical impact, the oil recovery factor was 94.12%, i.e. equaled to almost complete extraction of oil from the sample. In the field, this figure, of course, will decrease by 2-3 times, but it remains quite high in comparison with other methods of increasing oil recovery. Thus, the studies performed on samples in laboratory conditions indicate the possibility of using constant electric fields to increase oil recovery from depleted watered formations. Electrochemical treatment of the formation can significantly increase the displacement of oil from the formation. The increase in oil displacement reaches 15-20% and more. With the help of water alone, 58% of the oil (of its total volume in the sand) was displaced from the sand, and under electric field with a voltage of 10 V and 20 V, the total amount of displaced oil, respectively, increased to 67 and 83%. Thus, the laboratory studies performed on the samples also indicate the possibility of using constant electric fields to increase oil recovery from depleted watered formations. The carried out theoretical and experimental studies show the possibility of using the technology of electrochemical and electrothermochemical leaching of oilsaturated rocks to intensify oil production. The effectiveness of the recommended technology is especially noticeable in fields that have entered the final stage of development with a high water cut.


Author(s):  
Bin Li ◽  
Xiaohui Dou ◽  
Kai Yu ◽  
Yujie Huang ◽  
Wei Zhang ◽  
...  


2007 ◽  
Vol 9 (48) ◽  
pp. 6371 ◽  
Author(s):  
Mariana P. Boneva ◽  
Nikolay C. Christov ◽  
Krassimir D. Danov ◽  
Peter A. Kralchevsky


SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 319-330 ◽  
Author(s):  
Dai Makimura ◽  
Makoto Kunieda ◽  
Yunfeng Liang ◽  
Toshifumi Matsuoka ◽  
Satoru Takahashi ◽  
...  

Summary Molecular simulation is a powerful technique for obtaining thermodynamic properties of a system of given composition at a specific temperature and pressure, and it enables us to visualize microscopic phenomena. In this work, we used simulations to study interfacial phenomena and phase equilibria, which are important to CO2-enhanced oil recovery (EOR). We conducted molecular dynamics (MD) simulation of an oil/water interface in the presence of CO2. It was found that CO2 was enriched at the interfacial region under all thermal conditions. Whereas the oil/water interfacial tension (IFT) increases with pressure, CO2 reduces the IFT by approximately one-third at low pressure and one-half at higher pressure. Further analysis on the basis of our MD trajectories shows that the O=C=O bonds to the water with a “T-shaped” structure, which provides the mechanism for CO2 enrichment at the oil/water interface. The residual nonnegligible IFT at high pressures implies that the connate or injected water in a reservoir strongly influences the transport of CO2/oil solutes in that reservoir. We used Gibbs ensemble Monte Carlo (GEMC) simulation to compute phase equilibria and obtain ternary phase diagrams of such systems as CO2/n-butane/N2 and CO2/n-butane/n-decane. Simulating hydrocarbon fluids with a mixture of CO2 and N2 enables us to evaluate the effects of N2 impurity on CO2-EOR. It also enables us to study the phase behavior, which is routinely used to evaluate the minimum miscibility pressure (MMP). We chose these two systems because experimental data are available for them. Our calculated phase equilibria are in fair agreement with experiments. We also discuss possible ways to improve the predictive capability for CO2/hydrocarbon systems. GEMC and MD simulations of systems with heavier hydrocarbons are straightforward and enable us to combine molecular-level thinking with process considerations in CO2-EOR.





2013 ◽  
Vol 26 ◽  
pp. 1-8 ◽  
Author(s):  
A. Amraei ◽  
Zahra Fakhroueian ◽  
Alireza Bahramian

Fine SiO2 nanosphericals (2-5nm) and new various stable nanofluids including Tween 80, Span 80, Lauric alcohol-3EO, CTAB, SDS and K-Laurate surfactants in water or paraffin based solution were used as new SiO2 nanoproducts in oil recovery. These nanofluids can strongly change oil-wet carbonate reservoir rock to complete water-wet wettability and showed an excellent trend of surface tension (S.T) and IFT (interfacial tension) reduction in comparison with pure water and reference solutions. The CaCO3 plates reservoir was then aged for 2, 5 and 8 days into the 1, 3 and 8% of different concentrations of synthesized SiO2 nanofluids (effect of various concentrations via different aging time). Air/water and n-decane/water contact angles on oil-wet and clean carbonate rock aged in designed SiO2 nanofluids were measured and the pH value as a significant factor estimated. The interesting influence of microwave irradiation on surface tension and IFT including various SiO2 nanofluids was investigated after 12 min which some of the especial nanofluid concentrations showed successful reduction. Our findings indicated the important effect of temperature over decreasing of surface tension and IFT between oil and water interface including SiO2 nanofluids after annealing at 70°C. Therefore, this phenomenon can be significantly capable and valuable in applying of new technology in the fabrication of novel nanofluids in EOR processes and saving source of energy regarding to conventional production.





2014 ◽  
Vol 670-671 ◽  
pp. 976-981 ◽  
Author(s):  
Ming Zheng Duan ◽  
Robert A. Hayes ◽  
Xiao Zhang ◽  
Guo Fu Zhou

In this paper we describe the design, driving and electro-optical behavior of an electrofluidic, or electrowetting, display panel. Electrofluidic displays involve the movement of a colored oil water interface as a result of polarizing the interface between water and a hydrophobic surface under the influence of external electric field. The proposed direct-segment drive approach successfully drives the display panel based on electrofluidic. The electro-optical behavior of electrofluidic display samples are measured and analyzed. The tonand toffof the pixel is 16 ms and 8 ms, respectively, which demonstrates that electrofluidic display panels have the capability to show video content.



Author(s):  
Shaoyu Ni ◽  
Wei Qiu ◽  
Anran Zhang ◽  
David Prior

Oil spills can cause severe environmental damage. In-situ burning or chemical dispersant methods can be used in many situations; however these methods are highly toxic and fail in slightly rough seas. In-situ burning also has to begin very quickly before the lighter, flammable components in the oil evaporate. Oil recovery techniques have also been developed to recover oil using skimmer equipment installed in ships. The challenges arise when a vessel is operated in heavy sea and current conditions. An oil skimmer has recently been developed by the Extreme Spill Technology (EST) Inc. for automated oil recovery using a vacuum device installed in a vessel. Initial tests have shown that the prototype vessel is efficient in oil recovery and it can potentially achieve high recovery efficiency in rough seas of both deepwater and shallow water. The paper presents the numerical and experimental studies of the hydrodynamic performance of the vacuum tower installed in the oil skimmer developed by EST. The process of oil recovery by the vacuum mechanism is very complicated and involves multi-phase and multi-scale moving interfaces, including oil, water, atmospheric air and attenuate compressible air on the top part of the vacuum tower, and moving interface of oil slick, oil droplets and air bubbles of different scales. The recovery process was simplified into a three-phase flow problem involving oil, water and air and simulated by using a CFD method. The volume of fluid (VOF) method was employed to capture the moving surfaces between the fluid phases. Model tests were carried out to simulate the oil recovery process. Numerical results were compared with the experimental data. Studies were also extended to optimize the geometry of the tower for maximum oil recovery.



SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1812-1826
Author(s):  
Subhash Ayirala ◽  
Zuoli Li ◽  
Rubia Mariath ◽  
Abdulkareem AlSofi ◽  
Zhenghe Xu ◽  
...  

Summary The conventional experimental techniques used for performance evaluation of enhanced oil recovery (EOR) chemicals, such as polymers and surfactants, have been mostly limited to bulk viscosity, phase behavior/interfacial tension (IFT), and thermal stability measurements. Furthermore, fundamental studies exploring the different microscale interactions instigated by the EOR chemicals at the crude oil/water interface are scanty. The objective of this experimental study is to fill this existing knowledge gap and deliver an important understanding on underlying interfacial sciences and their potential implications for oil recovery in chemical EOR. Different microscale interactions of EOR chemicals, at crude oil/water interface, were studied by using a suite of experimental techniques, including an interfacial shear rheometer, Langmuir trough, and coalescence time measurement apparatus at both ambient (23°C) and elevated (70°C) temperatures. The reservoir crude oil and high-salinity injection water (57,000 ppm total dissolved solids) were used. Two chemicals, an amphoteric surfactant (at 1,000 ppm) and a sulfonated polyacrylamide polymer (at 500 and 700 ppm) were chosen because they are tolerant to high-salinity and high-temperature conditions. Interfacial viscous and elastic moduli (viscoelasticity), interface pressures, interface compression energies, and coalescence time between crude oil droplets are the major experimental data measured. Interfacial shear rheology results showed that surfactant favorably reduced the viscoelasticity of crude oil/water interface by decreasing the elastic and viscous modulus and increasing the phase angle to soften the interfacial film. Polymers in brine either alone or together with surfactant increased the viscous and elastic modulus and decreased the phase angle at the oil/water interface, thereby contributing to interfacial film rigidity. Interfacial pressures with polymers remained almost in the same order of magnitude as the high-salinity brine. In contrast, a significant reduction in interfacial pressures with surfactant was observed. The interface compression energies indicated the same trend and were reduced by approximately two orders of magnitude when surfactant was added to the brine. The surfactant was also able to retain similar interface behavior under compression even in the presence of polymers. The coalescence times between crude oil droplets were increased by polymers, while they were substantially decreased by the surfactant. These consistent findings from different experimental techniques demonstrated the adverse interactions of polymers at the crude oil/water interface to result in more rigid films, while confirming the high efficiency of the surfactant to soften the interfacial film, promote the oil droplets coalescence, and mobilize substantial amounts of residual oil in chemical EOR. This experimental study, for the first time, characterized the microscale interactions of surfactant-polymer chemicals at the crude oil/water interface. The applicability of several interfacial experimental techniques has been demonstrated to successfully understand underlying interfacial sciences and oil mobilization mechanisms in chemical EOR. These techniques and methods can provide potential means to efficiently screen and optimize EOR chemical formulations for better oil recovery in both sandstone and carbonate reservoirs.



Sign in / Sign up

Export Citation Format

Share Document