scholarly journals Study of Oxygen Saturation by Pulse Oximetry and Arterial Blood Gas in ICU Patients: A Descriptive Cross-sectional Study

2020 ◽  
Vol 58 (230) ◽  
Author(s):  
Nabin Rauniyar ◽  
Shyam Pujari ◽  
Pradeep Shrestha

Introduction: Pulse oximetery is expected to be an indirect estimation of arterial oxygen saturation. However, there often are gaps between SpO2 and SaO2. This study aims to study on arterial oxygen saturation measured by pulse oximetry and arterial blood gas among patients admitted in intensive care unit. Methods: It was a hospital-based descriptive cross-sectional study in which 101 patients meeting inclusion criteria were studied. SpO2 and SaO2 were measured simultaneously. Mean±SD of SpO2 and SaO2 with accuracy, sensitivity and specificity were measured. Results: According to SpO2 values, out of 101 patients, 26 (25.7%) were hypoxemic and 75 (74.25%) were non–hypoxemic. The mean±SD of SaO2 and SpO2 were 93.22±7.84% and 92.85±6.33% respectively. In 21 patients with SpO2<90%, the mean±SD SaO2 and SpO2 were 91.63±4.92 and 87.42±2.29 respectively. In 5 patients with SpO2 < 80%, the mean ± SD of SaO2 and SpO2 were: 63.40±3.43 and 71.80±4.28, respectively. In non–hypoxemic group based on SpO2 values, the mean±SD of SpO2 and SaO2 were 95.773±2.19% and 95.654±3.01%, respectively. The agreement rate of SpO2 and SaO2 was 83.2%, and sensitivity and specificity of PO were 84.6% and 83%, respectively. Conclusions: Pulse Oximetry has high accuracy in estimating oxygen saturation with sp02>90% and can be used instead of arterial blood gas.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


2016 ◽  
Vol 43 (6) ◽  
pp. 211
Author(s):  
Srie Yanda ◽  
Munar Lubis ◽  
Yoyoh Yusroh

Background Arterial blood gas is usually beneficial to discern thenature of gas exchange disturbances, the effectiveness of com-pensation, and is required for adequate management. AlthoughPaO 2 is the standard measurement of blood oxygenation, oxygensaturation measured by pulse oximetry (SapO 2 ) is now a custom-ary noninvasive assessment of blood oxygenation in newborn in-fants.Objective To compare oxygen saturation measured by pulse oxi-metry (SapO 2 ) and arterial blood gas (SaO 2 ), its correlation withother variables, and to predict arterial partial pressure of oxygen(PaO 2 ) based on SapO 2 values.Methods A cross sectional study was conducted on all neonatesadmitted to Pediatric Intensive Care Unit (PICU) during February2001 to May 2002. Neonates were excluded if they had impairedperipheral perfusion and/or congenital heart defects. Paired t-testwas used to compare SapO 2 with SaO 2 . Correlation between twoquantitative data was performed using Pearson’s correlation. Re-gression analysis was used to predict PaO 2 based on SapO 2 val-ues.Results Thirty neonates were included in this study. The differ-ence between SaO 2 and SapO 2 was significant . There were sig-nificant positive correlations between heart rate /pulse rate andTCO 2 , HCO 3 ; respiratory rate and TCO 2 , HCO 3 , base excess (BE);core temperature and HCO 3 , BE; surface temperature and pH,TCO 2, HCO 3, BE; SapO 2 and pH, PaO 2 ; and significant negativecorrelation between SapO 2 and PaCO 2 ; the correlations were weak.The linear regression equation to predict PaO 2 based on SapO 2values was PaO 2 = -79.828 + 1.912 SapO 2 .Conclusion Pulse oximetry could not be used in place of arterialblood gas analysis available for clinical purpose


1994 ◽  
Vol 3 (5) ◽  
pp. 353-355 ◽  
Author(s):  
ML Noll ◽  
JF Byers

Correlations of mixed venous and arterial oxygen saturation, heart rate, respiratory rate, and mean arterial pressure with arterial blood gas variables were computed for 57 sets of data obtained from 30 postoperative coronary artery bypass graft patients who were being weaned from mechanical ventilation. Arterial oxygen saturation and respiratory rate correlated significantly, although moderately, with blood gases.


2016 ◽  
Vol 29 (5) ◽  
pp. 343
Author(s):  
Miguel Pinto da Costa ◽  
Henrique Pimenta Coelho

<p>The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patient’s clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.</p>


Author(s):  
Aslıhan Gürün Kaya ◽  
Miraç Öz ◽  
İREM AKDEMİR KALKAN ◽  
Ezgi Gülten ◽  
güle AYDIN ◽  
...  

Introduction: Guidelines recommend using a pulse oximeter rather than arterial blood gas (ABG) for COVID-19 patients. However, significant differences can be observed between oxygen saturation measured by pulse oximetry (SpO2) and arterial oxygen saturation (SaO2) in some clinical conditions. We aimed to assess the reliability of pulse oximeter in patients with COVID-19 Methods: We retrospectively reviewed ABG analyses and SpO2 levels measured simultaneously with ABG in patients hospitalized in COVID-19 wards. Results: We categorized total 117 patients into two groups; in whom the difference between SpO2 and SaO2 was 4% (acceptable difference) and >4% (large difference). Large difference group exhibited higher neutrophil count, C-reactive protein, ferritin, fibrinogen, D-dimer and lower lymphocyte count. Multivariate analyses revealed that increased fibrinogen, increased ferritin and decreased lymphocyte count were independent risk factors for large difference between SpO2 and SaO2. The total study group demonstrated the negative bias of 4.02% with the limits of agreement of −9.22% to 1.17%. The bias became significantly higher in patients with higher ferritin, fibrinogen levels and lower lymphocyte count. Conclusion: Pulse oximeters may not be sufficient to assess actual oxygen saturation especially in COVID-19 patients with high ferritin and fibrinogen levels and low lymphocyte count low SpO2 measurements.


2007 ◽  
Vol 16 (2) ◽  
pp. 168-178 ◽  
Author(s):  
Shyang-Yun Pamela K. Shiao ◽  
Ching-Nan Ou

•Background Pulse oximetry is commonly used to monitor oxygenation in neonates, but cannot detect variations in hemoglobin. Venous and arterial oxygen saturations are rarely monitored. Few data are available to validate measurements of oxygen saturation in neonates (venous, arterial, or pulse oximetric). •Purpose To validate oxygen saturation displayed on clinical monitors against analyses (with correction for fetal hemoglobin) of blood samples from neonates and to present the oxyhemoglobin dissociation curve for neonates. •Method Seventy-eight neonates, 25 to 38 weeks’ gestational age, had 660 arterial and 111 venous blood samples collected for analysis. •Results The mean difference between oxygen saturation and oxyhemoglobin level was 3% (SD 1.0) in arterial blood and 3% (SD 1.1) in venous blood. The mean difference between arterial oxygen saturation displayed on the monitor and oxyhemoglobin in arterial blood samples was 2% (SD 2.0); between venous oxygen saturation displayed on the monitor and oxyhemoglobin in venous blood samples it was 3% (SD 2.1) and between oxygen saturation as determined by pulse oximetry and oxyhemoglobin in arterial blood samples it was 2.5% (SD 3.1). At a Pao2 of 50 to 75 mm Hg on the oxyhemoglobin dissociation curve, oxyhemoglobin in arterial blood samples was from 92% to 95%; oxygen saturation was from 95% to 98% in arterial blood samples, from 94% to 97% on the monitor, and from 95% to 97% according to pulse oximetry. •Conclusions The safety limits for pulse oximeters are higher and narrower in neonates (95%–97%) than in adults, and clinical guidelines for neonates may require modification.


2007 ◽  
Vol 26 (7) ◽  
pp. 583-586 ◽  
Author(s):  
H. Hassanian-Moghaddam ◽  
A. Pajoumand ◽  
S.M. Dadgar ◽  
Sh. Shadnia

The aim of this study was to assess the clinical and laboratory factors in methanol poisoned patients to determine the prognosis of their toxicity. This survey was done as a prospective cross-sectional study in methanol-poisoned patients in Loghman-Hakim hospital poison center during 9 months from October 1999—June 2000. During this time 25 methanol-poisoned patients were admitted. The mortality rate was 12 (48%). Amongst survivors, three (23%) of the patients developed blindness due to their poisoning and the other 10 (77%) fully recovered without any complication. The mortality rate in comatose patients was nine (90%) while in non-comatose patients it was three (20%) ( P < 0.001). There was a significant difference in mean pH in the first arterial blood gas of patients who subsequently died (6.82 ± 0.03) and survivors (7.15 ± 0.06) ( P < 0.001, M-W). The mean time interval between poisoning and ED presentation in deceased patients were (46 ± 15.7) hours, in survived with sequelae were (16.7 ± 6.7) and in survived without sequelae were (10.3 ± 7.2) hours ( P < 0.002, K-W). We found no significant difference between the survivors versus the patients who died regarding methanol. Simultaneous presence of ethanol and opium affected the outcome of the treatment for methanol intoxication favourably and unfavourably, respectively. In our study, poor prognosis was associated with pH < 7, coma on admission and >24 hours delay from intake to admission. Human & Experimental Toxicology (2007) 26: 583—586.


2021 ◽  
Author(s):  
Masoud Zadkarami ◽  
Nahid Sadat-Mirdamadi ◽  
Amirkamal Hardani ◽  
Mohammadreza Mirkarimi ◽  
Mohsen Alisamir ◽  
...  

Oxygenation index (OI) based on arterial blood gas (ABG) test is an invasive procedure and requires indwelling arterial lines. However, the oxygen saturation index (OSI) assessed by the pulse oximetry method is simple and noninvasive for monitoring oxygenation saturation in newborn neonates with chronic lung disease. This study aimed to evaluate and compare OI and OSI among neonates in NICU who underwent mechanical ventilation. A cross-sectional study was carried out among fifty neonates (term and preterm) who were admitted to the NICU of Abuzar Hospital in Ahvaz, Iran. All neonates were examined by both ABG and pulse oximetry methods. Approximately 2 cc of arterial blood sample was taken and sent to the laboratory to determine blood gases. At the same time, the level of peripheral capillary oxygen saturation (SpO) was recorded using a pulse oximeter. OI and OSI were calculated according to their formula. Spearman’s correlation, linear regression, and Bland-Altman scatter plot were used to determine the correlation, association, and agreement between OI and OSI, respectively. Of the total 50 neonates, 26 were female. The mean (range) gestational age was 35.28±3.01 (28-39) weeks, and post-neonatal age was 6.05±7.04 (1-25) weeks. There was a linear and significant association and correlation between OI and oxygen OSI (P<0.001), while the Bland-Altman scatter plot confirmed the agreement between them in mean values. Therefore, OSI utilizing pulse oximetry as a noninvasive method can be a substitute for OI in neonates with respiratory failure. It can also reduce workloads and costs.


Sign in / Sign up

Export Citation Format

Share Document