scholarly journals Is pulse oximeter a reliable tool for non-critically ill patients with COVID-19?

Author(s):  
Aslıhan Gürün Kaya ◽  
Miraç Öz ◽  
İREM AKDEMİR KALKAN ◽  
Ezgi Gülten ◽  
güle AYDIN ◽  
...  

Introduction: Guidelines recommend using a pulse oximeter rather than arterial blood gas (ABG) for COVID-19 patients. However, significant differences can be observed between oxygen saturation measured by pulse oximetry (SpO2) and arterial oxygen saturation (SaO2) in some clinical conditions. We aimed to assess the reliability of pulse oximeter in patients with COVID-19 Methods: We retrospectively reviewed ABG analyses and SpO2 levels measured simultaneously with ABG in patients hospitalized in COVID-19 wards. Results: We categorized total 117 patients into two groups; in whom the difference between SpO2 and SaO2 was 4% (acceptable difference) and >4% (large difference). Large difference group exhibited higher neutrophil count, C-reactive protein, ferritin, fibrinogen, D-dimer and lower lymphocyte count. Multivariate analyses revealed that increased fibrinogen, increased ferritin and decreased lymphocyte count were independent risk factors for large difference between SpO2 and SaO2. The total study group demonstrated the negative bias of 4.02% with the limits of agreement of −9.22% to 1.17%. The bias became significantly higher in patients with higher ferritin, fibrinogen levels and lower lymphocyte count. Conclusion: Pulse oximeters may not be sufficient to assess actual oxygen saturation especially in COVID-19 patients with high ferritin and fibrinogen levels and low lymphocyte count low SpO2 measurements.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


1994 ◽  
Vol 3 (5) ◽  
pp. 353-355 ◽  
Author(s):  
ML Noll ◽  
JF Byers

Correlations of mixed venous and arterial oxygen saturation, heart rate, respiratory rate, and mean arterial pressure with arterial blood gas variables were computed for 57 sets of data obtained from 30 postoperative coronary artery bypass graft patients who were being weaned from mechanical ventilation. Arterial oxygen saturation and respiratory rate correlated significantly, although moderately, with blood gases.


2020 ◽  
Vol 58 (230) ◽  
Author(s):  
Nabin Rauniyar ◽  
Shyam Pujari ◽  
Pradeep Shrestha

Introduction: Pulse oximetery is expected to be an indirect estimation of arterial oxygen saturation. However, there often are gaps between SpO2 and SaO2. This study aims to study on arterial oxygen saturation measured by pulse oximetry and arterial blood gas among patients admitted in intensive care unit. Methods: It was a hospital-based descriptive cross-sectional study in which 101 patients meeting inclusion criteria were studied. SpO2 and SaO2 were measured simultaneously. Mean±SD of SpO2 and SaO2 with accuracy, sensitivity and specificity were measured. Results: According to SpO2 values, out of 101 patients, 26 (25.7%) were hypoxemic and 75 (74.25%) were non–hypoxemic. The mean±SD of SaO2 and SpO2 were 93.22±7.84% and 92.85±6.33% respectively. In 21 patients with SpO2<90%, the mean±SD SaO2 and SpO2 were 91.63±4.92 and 87.42±2.29 respectively. In 5 patients with SpO2 < 80%, the mean ± SD of SaO2 and SpO2 were: 63.40±3.43 and 71.80±4.28, respectively. In non–hypoxemic group based on SpO2 values, the mean±SD of SpO2 and SaO2 were 95.773±2.19% and 95.654±3.01%, respectively. The agreement rate of SpO2 and SaO2 was 83.2%, and sensitivity and specificity of PO were 84.6% and 83%, respectively. Conclusions: Pulse Oximetry has high accuracy in estimating oxygen saturation with sp02>90% and can be used instead of arterial blood gas.


1998 ◽  
Vol 7 (5) ◽  
pp. 370-373 ◽  
Author(s):  
P Smatlak ◽  
AR Knebel

OBJECTIVE: To examine the effect of abnormal cardiac index on the accuracy of measurement of oxygen saturation by pulse oximetry. METHODS: Forty-six patients (mean age, 49 years) in a 9-bed medical ICU were studied. Measurements of oxygen saturation obtained with pulse oximeters and with a functional cooximeter were collected at baseline and 4, 8, 16, 24, 32, 40, and 48 hours later. Hemodynamic and cardiopulmonary parameters were recorded. RESULTS: The Bland-Altman technique yielded upper and lower limits of agreement of 2.53% and -7.11%. Most (95.7%) of the differences between the measurements of oxygen saturation obtained with the 2 methods were within these limits, although some of these differences may be clinically unacceptable. The bias was -2.29%, and the precision was 2.41%. The clinical conditions associated with inaccurate tracking of saturation by pulse oximetry across the range of actual arterial oxygen saturation values were abnormal cardiac index, partial pressure of carbon dioxide, heart rate, and pulmonary capillary wedge pressure. CONCLUSIONS: In patients with abnormal cardiac index, the pulse oximeter measurements exceeded the actual oxygen saturation by up to 7%. Pending prospective studies, clinicians should be aware that when certain cardiopulmonary parameters are abnormal, the margin of error in measurements of oxygen saturation obtained with a pulse oximeter may be greater than when those parameters are normal.


1944 ◽  
Vol 79 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Frank L. Engel ◽  
Helen C. Harrison ◽  
C. N. H. Long

1. In a series of rats subjected to hemorrhage and shock a high negative correlation was found between the portal and peripheral venous oxygen saturations and the arterial blood pressure on the one hand, and the blood amino nitrogen levels on the other, and a high positive correlation between the portal and the peripheral oxygen saturations and between each of these and the blood pressure. 2. In five cats subjected to hemorrhage and shock the rise in plasma amino nitrogen and the fall in peripheral and portal venous oxygen saturations were confirmed. Further it was shown that the hepatic vein oxygen saturation falls early in shock while the arterial oxygen saturation showed no alteration except terminally, when it may fall also. 3. Ligation of the hepatic artery in rats did not affect the liver's ability to deaminate amino acids. Hemorrhage in a series of hepatic artery ligated rats did not produce any greater rise in the blood amino nitrogen than a similar hemorrhage in normal rats. The hepatic artery probably cannot compensate to any degree for the decrease in portal blood flow in shock. 4. An operation was devised whereby the viscera and portal circulation of the rat were eliminated and the liver maintained only on its arterial circulation. The ability of such a liver to metabolize amino acids was found to be less than either the normal or the hepatic artery ligated liver and to have very little reserve. 5. On complete occlusion of the circulation to the rat liver this organ was found to resist anoxia up to 45 minutes. With further anoxia irreversible damage to this organ's ability to handle amino acids occurred. 6. It is concluded that the blood amino nitrogen rise during shock results from an increased breakdown of protein in the peripheral tissues, the products of which accumulate either because they do not circulate through the liver at a sufficiently rapid rate or because with continued anoxia intrinsic damage may occur to the hepatic parenchyma so that it cannot dispose of amino acids.


PEDIATRICS ◽  
1987 ◽  
Vol 79 (4) ◽  
pp. 524-528
Author(s):  
Michael S. Jennis ◽  
Joyce L. Peabody

Continuous monitoring of oxygenation in sick newborns is vitally important. However, transcutaneous Po2 measurements have a number of limiations. Therefore, we report the use of the pulse oximeter for arterial oxygen saturation (Sao2) determination in 26 infants (birth weights 725 to 4,000 g, gestational ages 24 to 40 weeks, and postnatal ages one to 49 days). Fetal hemoglobin determinations were made on all infants and were repeated following transfusion. Sao2, readings from the pulse oximeter were compared with the Sao2 measured in vitro on simultaneously obtained arterial blood samples. The linear regression equation for 177 paired measurements was: y = 0.7x + 27.2; r = .9. However, the differences between measured Sao2 and the pulse oximeter Sao2 were significantly greater in samples with &gt; 50% fetal hemoglobin when compared with samples with &lt; 25% fetal hemoglobin (P &lt; .001). The pulse oximeter was easy to use, recorded trends in oxygenation instantaneously, and was not associated with skin injury. We conclude that pulse oximetry is a reliable technique for the continuous, noninvasive monitoring of oxygenation in newborn infants.


1964 ◽  
Vol 19 (2) ◽  
pp. 284-286 ◽  
Author(s):  
Loring B. Rowell ◽  
Henry L. Taylor ◽  
Yang Wang ◽  
Walter S. Carlson

The per cent saturation of the arterial blood with oxygen was examined in four men before and during the last 15 sec of a 3-min run of sufficient intensity to elicit a maximal oxygen intake. The measurements were repeated after a 3-month period of intensive conditioning for middle distance running and in a group of four athletes in good physical condition. The per cent saturation in the sedentary group was 95.8 at rest and 93.4 during exhausting exercise; after conditioning the similar figures were 95.4 and 91.4 and, finally, the athletes showed a per cent saturation of 85.2 during the heavy work. The arterial oxygen content during exhausting work was found to be 20.12 ml/100 ml blood in the sedentary group before training, 19.02 after conditioning, and 18.18 in the group of athletes. It is concluded that, in athletes who are well conditioned and pushing themselves close to the limit of their capacity, arterial desaturation can take place. athletic conditioning and arterial oxygen saturation; arterial desaturation in athletes; ventilation and arterial desaturation; oxygen intake and arterial oxygen saturation Submitted on August 5, 1963


2016 ◽  
Vol 29 (5) ◽  
pp. 343
Author(s):  
Miguel Pinto da Costa ◽  
Henrique Pimenta Coelho

<p>The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patient’s clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.</p>


1961 ◽  
Vol 16 (4) ◽  
pp. 639-640 ◽  
Author(s):  
Ernst Simonson

Arterial oxygen saturation was measured by means of an earlobe oximeter in 68 older (mean age 59.5) and 58 younger, (mean age 23.4 years) healthy men while breathing a 10% O2, 90% N2 mixture for a period of 10 min. The drop of the arterial oxygen saturation was more pronounced in the older men, and the difference in reaction was statistically highly significant. Submitted on January 9, 1961


Sign in / Sign up

Export Citation Format

Share Document