scholarly journals Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia

2017 ◽  
Vol 11 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Idham Riyando Moe ◽  
Shuichi Kure ◽  
Nurul Fajar Januriyadi ◽  
Mohammad Farid ◽  
Keiko Udo ◽  
...  
2016 ◽  
Vol 11 (3) ◽  
pp. 110-125 ◽  
Author(s):  
Yan Li ◽  
Chunlu Liu

Urban flooding has been a severe problem for many cities around the world as it remains one of the greatest threats to the property and safety of human communities. In Australia, it is seen as the most expensive natural hazard. However, urban areas that are impervious to rainwater have been sharply increasing owing to booming construction activities and rapid urbanisation. The change in the built environment may cause more frequent and longer duration of flooding in floodprone urban regions. Thus, the flood inundation issue associated with the effects of land uses needs to be explored and developed. This research constructs a framework for modelling urban flood inundation. Different rainfall events are then designed for examining the impact on flash floods generated by land-use changes. Measurement is formulated for changes of topographical features over a real time series. Geographic Information System (GIS) technologies are then utilised to visualise the effects of land-use changes on flood inundation under different types of storms. Based on a community-based case study, the results reveal that the built environment leads to varying degrees of aggravation of urban flash floods with different storm events and a few rainwater storage units may slightly mitigate flooding extents under different storm conditions. Hence, it is recommended that the outcomes of this study could be applied to flood assessment measures for urban development and the attained results could be utilised in government planning to raise awareness of flood hazard.


Author(s):  
M. Sneed ◽  
J. T. Brandt

Abstract. Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.


2021 ◽  
Vol 23 (2) ◽  
pp. 53-60
Author(s):  
Muhammad Ardiansyah ◽  
Rifqi Aditya Nugraha ◽  
La Ode Syamsul Iman ◽  
Syamsu Dwi Djatmiko

Land use and climatic changes potentially affect the surface runoff and inundation in watershed zones. Every year, the outflow of the Cimanuk River causes floods across the majority of the upper area of the Cimanuk Watershed, as well as the lower area. This study aimed to assess the impact of climatic and land use changes on future flood inundation in the Lower Cimanuk Watershed using a RRI model. Land-use change has been prepared by modeling using a multi-layer perceptron neural network and Markov Chain approach, while climate change using HadGEM2-ES global climate model data under scenarios RCP4.5. In particular, the forest area was projected to decline in this watershed zone, from 19.54% of the total area in 2019 to 17.73% in 2050. Similarly, the area of paddy fields was predicted to decline from approximately 34.36% in 2019 to 29.65% in 2050. In contrast, other types of land use such as dryland agriculture, mixed dryland agriculture, and settlements were projected to increase in the future. The coverage of the simulated flood inundation area using the Rainfall-Runoff Inundation model estimated to reach 179.4 km2 in 2019. The simulation results showed an increase in flood inundation areas in 2030 and 2050, alongside changes in land use and climate. The areas affected by flood inundation were estimated to reach 253.3 km2in 2030. This coverage was expected to increase by 311.9 km2 in 2050, with severely affected land uses including settlements, dry land agriculture, mixed dry land agriculture, paddy fields, and ponds.


2021 ◽  
Vol 6 (4) ◽  
pp. 16-21
Author(s):  
Ofik T. Purwadi ◽  
L. Afriani ◽  
A. Zakaria

The University of Lampung area, especially in the Faculty of ISIP, FEB, and FT is a densely packed student area. This area has undergone many land-use changes. The condition of the land as a green open space has changed its function to become an area for lecture buildings and offices. One of the impacts is an increase in direct surface runoff and a decrease in the quantity of water that seeps into the ground, this condition causes flooding during the rainy season. To facilitate the rehabilitation of the drainage system in the University of Lampung area, it is necessary to redesign the drainage system of the University of Lampung area. Rehabilitation of drainage channels is carried out to resolve flood inundation points that occur during the rainy season. Rainwater that is channeled through drainage channels is directed to natural or artificial reservoirs. The collected rainwater is used to recharge groundwater through natural infiltration methods. The analysis carried out in this study includes hydrological analysis and analysis of the existing drainage sections and the solutions are given. The hydrological analysis aims to calculate the planned discharge using the rational method. Modeling with the application used in this study aims to determine the capacity of the water level in the existing channel. Based on the results of the analysis, in the area, the Faculty of Engineering experienced runoff and inundation. This situation requires rehabilitation of the Lampung University area drainage system.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


Author(s):  
Pavlo Kazmir ◽  
Lyubomyr Kazmir

Interest in land-use changes (LUC) research has been growing rapidly in recent years. This topic has already become the subject of a separate scientific discipline – land use science (or land change science). In order to formulate relevant future policy and develop appropriate land-use management tools, it is crucial to know how the LUC шьзфсе the environment and society condition. For Ukraine, where the structure of land use and the system of land resources management have significantly changed during the years of post-socialist transformation of land relations, the study of the LUC on a modern methodological basis is especially actual. The paper, based on a critical analysis of publications in leading international journals over the last thirty years, identifies key directions of LUC studies and analyzes their methodological features. There is a significant increase of the number of works based on the results of meta-studies and the use of a wide range of methods for modeling the LUC processes, their causes and possible consequences. The great "synergistic potential" of integration of the selected directions is noted, which makes it possible to accelerate the development of the general theory of land use and increase its use efficiency in substantiation of management decisions in the sphere of land use and modernization of the mechanisms of state land, spatial and ecological policies with consideration of existing and potential globalizing challenges. In this context, the key role of the land use integrated planning methodology at regional and local levels is emphasized. This methodology would require close cooperation between government, business and the public in developing a common vision for the implementation of specific land use plans and projects based on the principles of subsidiarity, participativity and shared responsibility.


Sign in / Sign up

Export Citation Format

Share Document