Safe control of SEMS in group interaction

Author(s):  
A. E. Gorodetskiy ◽  
V. G. Kurbanov ◽  
I. L. Tarasova

Introduction:In control over a group of interacting smart electromechanical systems (SEMS), situations may arise when the operator’s instructions and/or the automatic control system at a higher level contradict the internal state of the controlled SEMS and/or the environment of choice. Such situations can be prevented by algorithms which check the fulfillment of conditions for the admissibility of movements. These algorithms can be based on modeling the SEMS behavior using logical-probabilistic or logicallinguistic descriptions of situations, and on non-scalar quality criteria when making decisions.Purpose:The development of algorithms for safe control over robots based on SEMS modules with phase constraints, under incomplete certainty of the environment.Results:Algorithms have been developed for safe control over three robots, using a mathematical description of situational control over a group of SEMS and the methodology of organizing the situational control over a group of mobile SEMS. The algorithms move the robots from certain current positions to specified terminal positions, avoiding their collisions with each other. In order to avoid collisions, the decision-making system in a robot’s central nervous system uses robot’s priorities based on the distance between the robots. An approach has been proposed to overcome uncertainty on the way (trajectory) of the robots. Uncertainties in the form of logical-probabilistic and logical-linguistic type constraints are considered. It is shown that these restrictions can be translated into a logical-interval form. This allows you to use standard mathematical programming procedures when searching for the optimal solution.Practical relevance:The obtained algorithms can be used for decision-making in the central nervous system and when controlling robots.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rahmita Wirza ◽  
Shah Nazir ◽  
Habib Ullah Khan ◽  
Iván García-Magariño ◽  
Rohul Amin

The medical system is facing the transformations with augmentation in the use of medical information systems, electronic records, smart, wearable devices, and handheld. The central nervous system function is to control the activities of the mind and the human body. Modern speedy development in medical and computational growth in the field of the central nervous system enables practitioners and researchers to extract and visualize insight from these systems. The function of augmented reality is to incorporate virtual and real objects, interactively running in a real-time and real environment. The role of augmented reality in the central nervous system becomes a thought-provoking task. Gesture interaction approach-based augmented reality in the central nervous system has enormous impending for reducing the care cost, quality refining of care, and waste and error reducing. To make this process smooth, it would be effective to present a comprehensive study report of the available state-of-the-art-work for enabling doctors and practitioners to easily use it in the decision making process. This comprehensive study will finally summarise the outputs of the published materials associate to gesture interaction-based augmented reality approach in the central nervous system. This research uses the protocol of systematic literature which systematically collects, analyses, and derives facts from the collected papers. The data collected range from the published materials for 10 years. 78 papers were selected and included papers based on the predefined inclusion, exclusion, and quality criteria. The study supports to identify the studies related to augmented reality in the nervous system, application of augmented reality in the nervous system, technique of augmented reality in the nervous system, and the gesture interaction approaches in the nervous system. The derivations from the studies show that there is certain amount of rise-up in yearly wise articles, and numerous studies exist, related to augmented reality and gestures interaction approaches to different systems of the human body, specifically to the nervous system. This research organises and summarises the existing associated work, which is in the form of published materials, and are related to augmented reality. This research will help the practitioners and researchers to sight most of the existing studies subjected to augmented reality-based gestures interaction approaches for the nervous system and then can eventually be followed as support in future for complex anatomy learning.


Author(s):  
Russell Clive Dale

Autoimmune and inflammatory disorders of the central nervous system can result in significant morbidity and mortality. Through the recognition of syndromes using diagnostic biomarkers, the clinician is now able to use immune suppressive therapies to improve outcomes. However, the therapeutic decision-making process is complex. The clinician has to balance the risk of disease, with the risk of treatment side effects. To achieve this balance, it is important to understand the natural history of disease, the risk of residual disability, the risk of relapse, and risk of a fatal outcome. It is also important to have some understanding of the pathological processes, as some of the entities have more reversible processes, whereas others have destructive processes. This review will assess the dynamic nature of this decision-making process, and compare some of the more severe diseases such as neuromyelitis optica, anti-N-methyl-D-aspartate receptor encephalitis and opsoclonus myoclonus ataxia syndrome, with disorders with more favourable outcomes such as Sydenham chorea and post-infectious cerebellar ataxia. 


2020 ◽  
Author(s):  
James H. Kryklywy ◽  
Mana R. Ehlers ◽  
Andre O. Beukers ◽  
Sarah R. Moore ◽  
Rebecca M. Todd ◽  
...  

AbstractIn the somatosensory system, hedonic information is coded by mechanoreceptors at the point of contact. Pleasure and pain signals travel along peripheral nerve pathways distinct from those for discriminative touch. Yet it remains unknown whether the central nervous system represents tactile hedonic information in sensory cortices as another dimension of exteroceptive information, similar to discriminative touch signals, or if tactile hedonic information is instantiated in regions mediating internal interoceptive states. Employing representational similarity analysis with a new approach of pattern component modeling, we decomposed multivoxel patterns to demonstrate that signals of painful but not pleasurable touch are represented in primary somatosensory cortices. By contrast, all hedonic touch representations were identified in regions associated with affect and interoception. This suggests that touch should be divided into external-exteroceptive and internal-interoceptive dimensions, with hedonic touch represented as an internal state, even though evoked by external stimulation.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Sign in / Sign up

Export Citation Format

Share Document