Principles of Forming the Language of Sensation for Decision Making in the Central Nervous System of SEMS

Author(s):  
Andrey E. Gorodetskiy ◽  
Irina L. Tarasova ◽  
Vugar G. Kurbanov
Author(s):  
A. E. Gorodetskiy ◽  
V. G. Kurbanov ◽  
I. L. Tarasova

Introduction:In control over a group of interacting smart electromechanical systems (SEMS), situations may arise when the operator’s instructions and/or the automatic control system at a higher level contradict the internal state of the controlled SEMS and/or the environment of choice. Such situations can be prevented by algorithms which check the fulfillment of conditions for the admissibility of movements. These algorithms can be based on modeling the SEMS behavior using logical-probabilistic or logicallinguistic descriptions of situations, and on non-scalar quality criteria when making decisions.Purpose:The development of algorithms for safe control over robots based on SEMS modules with phase constraints, under incomplete certainty of the environment.Results:Algorithms have been developed for safe control over three robots, using a mathematical description of situational control over a group of SEMS and the methodology of organizing the situational control over a group of mobile SEMS. The algorithms move the robots from certain current positions to specified terminal positions, avoiding their collisions with each other. In order to avoid collisions, the decision-making system in a robot’s central nervous system uses robot’s priorities based on the distance between the robots. An approach has been proposed to overcome uncertainty on the way (trajectory) of the robots. Uncertainties in the form of logical-probabilistic and logical-linguistic type constraints are considered. It is shown that these restrictions can be translated into a logical-interval form. This allows you to use standard mathematical programming procedures when searching for the optimal solution.Practical relevance:The obtained algorithms can be used for decision-making in the central nervous system and when controlling robots.


Author(s):  
Russell Clive Dale

Autoimmune and inflammatory disorders of the central nervous system can result in significant morbidity and mortality. Through the recognition of syndromes using diagnostic biomarkers, the clinician is now able to use immune suppressive therapies to improve outcomes. However, the therapeutic decision-making process is complex. The clinician has to balance the risk of disease, with the risk of treatment side effects. To achieve this balance, it is important to understand the natural history of disease, the risk of residual disability, the risk of relapse, and risk of a fatal outcome. It is also important to have some understanding of the pathological processes, as some of the entities have more reversible processes, whereas others have destructive processes. This review will assess the dynamic nature of this decision-making process, and compare some of the more severe diseases such as neuromyelitis optica, anti-N-methyl-D-aspartate receptor encephalitis and opsoclonus myoclonus ataxia syndrome, with disorders with more favourable outcomes such as Sydenham chorea and post-infectious cerebellar ataxia. 


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document