Emigration of neutrophils in the central nervous system

Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.

Author(s):  
Siddharthan Chandran ◽  
Alastair Compston

Clinicians suspect demyelination when episodes reflecting damage to white matter tracts within the central nervous system occur in young adults. The paucity of specific biological markers of discrete demyelinating syndromes places an emphasis on clinical phenotype—temporal and spatial patterns—when classifying demyelinating disorders. The diagnosis of multiple sclerosis, the most common demyelinating disorder, becomes probable when these symptoms and signs recur, involving different parts of the brain and spinal cord. Other important demyelinating diseases include post-infectious neurological disorders (acute disseminated encephalomyelitis), demyelination resulting from metabolic derangements (central pontine myelinosis), and inherited leucodystrophies that may present in children or in adults. Accepting differences in mechanism, presentation, and treatment, two observations can usefully be made when classifying demyelinating disorders. These are the presence or absence of inflammation, and the extent of focal vs. diffuse demyelination. Multiple sclerosis is prototypic for the former, whereas dysmyelinating disorders, such as leucodystrophies are representative of the latter....


Neurosurgery ◽  
2007 ◽  
Vol 61 (6) ◽  
pp. E1336-E1337 ◽  
Author(s):  
Daina Kashiwazaki ◽  
Kazutoshi Hida ◽  
Shunsuke Yano ◽  
Toshitaka Seki ◽  
Yoshinobu Iwasaki

Abstract OBJECTIVE Hemangiopericytomas, vascular tumors arising in soft tissue, are relatively rare in the central nervous system; they comprise less than 1% of all hemangiopericytomas. Central nervous system hemangiopericytomas occur primarily in the epidural space of the brain and spinal cord. There are no previous reports of subpial, extramedullary growing central nervous system hemangiopericytomas. CLINICAL PRESENTATION We document the first case of a subpial hemangiopericytoma with extramedullary growth in the thoracic spine. The patient was a 31-year-old man who developed progressively worsening left lower limb numbness that was followed by gait disturbance over the course of 4 months. INTERVENTION Magnetic resonance imaging revealed an intradural tumor at the T4–T6 level of the thoracic spine. Because the patient's symptoms progressed, he underwent resection of the tumor, which had arisen in the spinal cord subpially without attachment to the dura mater. CONCLUSION The pathological diagnosis was hemangiopericytoma. Differential diagnoses include hemangioblastoma, meningioma, schwannoma, and solitary fibrous tumor, the clinical course and prognosis of which are different from hemangiopericytoma. Our experience indicates that hemangiopericytomas can occur as intradural tumors arising from the subpial portion.


Author(s):  
Kohei Shiota

ABSTRACT The organogenesis of the central nervous system (CNS) begins during the third week of development, but its maturation requires a considerably long period of time until after birth. Therefore the developing nervous system is vulnerable to the deleterious effects of environmental factors during the pre- and perinatal periods. In addition, molecular studies have revealed various gene mutations that are responsible for congenital CNS disorders. This chapter provides an overview of the prenatal development of the human brain and spinal cord. How to cite this article Shiota K. Prenatal Development of the Human Central Nervous System, Normal and Abnormal. Donald School J Ultrasound Obstet Gynecol 2015;9(1):61-66.


1908 ◽  
Vol 54 (225) ◽  
pp. 146-148
Author(s):  
William W. Ireland

Rothmann points out how important it is to surgeons that the localisation of lesions in the brain and spinal cord should be made with the utmost accuracy. In many cases diseases do not strike suddenly upon a nervous system previously intact. Often the circulation has been previously deranged by arterial sclerosis, which prepares the way for transitory hemiplegia or aphasia. Sometimes there is loss of function after central lesions, which disappears in longer or shorter time. Goltz and his followers have treated many effects following the extirpation of the whole or part of the cerebrum as due to what they call inhibition (Hemmung). Thus the functions of the spinal cord are much impaired after removal of the cerebral ganglia, or the lower portion of the cord loses its reflex function after section higher up, but after a while it again resumes its act$ibon.


2021 ◽  
pp. 243-252
Author(s):  
Andrew Hart

The functioning nervous system is an integrated system including conscious and subconscious pathways in the brain and spinal cord, the peripheral nerves, and specialized target organs. Efferent and afferent feedback pathways integrate at multiple levels, and there is interplay with mood, life function, growth, and development. The peripheral nervous system provides homeostatic and pain functions, and links the virtual world of our consciousness to the physical body that senses and manipulates the world around us. Injury disconnects the central nervous system from physical reality and induces profound, time-dependent changes at all levels of the system that mostly impede functional restitution after nerve reconstruction. For surgery to optimize outcomes it must be timely, and applied with precision, neurobiological awareness, and aided by adjuvant therapies or technologies that modulate responses within the central nervous system, primary motor and sensory neurons, repair site, distal nerve stump, and target organs.


2020 ◽  
pp. 5785-5802
Author(s):  
Christian Krarup

This chapter looks at electrophysiological studies of the central nervous system and peripheral nervous system—the core investigations in clinical neurophysiology. These include electroencephalography, which is of value to diagnose epilepsy caused by focal or diffuse brain diseases, electromyography and nerve conduction studies, which are of value to diagnose diseases in nerves and muscles, and evoked potentials, which are of value to diagnose diseases of white matter in the brain and spinal cord.


Author(s):  
R. C. A. Pearson

The symptoms, signs, and syndromes of psychiatry, whether organic or biological psychiatric disease or not, in the main reflect alterations in functions which reside in the cerebral cortex, including the limbic lobe, and those structures and pathways closely related to the cortex. These cortical manifestations of psychiatric disease include alterations in thought, language, perception, mood, memory, motivation, personality, behaviour, and intellect. Therefore, this brief account of brain structures and pathways that are important in psychiatry will concentrate on the cerebral cortex and related structures and pathways. Readers who require a fuller account of central nervous system anatomy are referred to the many standard texts, which give a more complete coverage of the subject. Broadly speaking, neuroanatomy can be subdivided into two parts—the topographical organization of the brain and spinal cord, and the anatomical connections forming functional pathways in the central nervous system. The former is of vital importance clinically, since pathologies rarely respect the boundaries of functional systems, and knowledge of the spatial relationships of different brain structures is increasingly useful as modern imaging methods more accurately visualize detailed brain structure in vivo. However, it is the second subdivision of the subject which makes the greater contribution to understanding the biological basis of psychiatric disease, and it is this that will be at the centre of the present account.


2016 ◽  
Vol 25 (2) ◽  
pp. 158-162 ◽  
Author(s):  
José Ledamir Sindeaux Neto ◽  
Michele Velasco ◽  
José Mauro Vianna da Silva ◽  
Patricia de Fátima Saco dos Santos ◽  
Osimar Sanches ◽  
...  

Abstract The genus Myxobolus, parasites that infect fishes, which cause myxobolosis, includes spore organisms belonging to the phylum Myxozoa and represents approximately 36% of all species described for the entire phylum. This study describes lymphocytic meningoencephalomyelitis associated with Myxobolus sp. infection in the brain and spinal cord (the central nervous system, CNS) of Eigenmannia sp., from the Amazon estuary region, in the Administrative District of Outeiro (DAOUT), Belém, Pará, Brazil. In May and June 2015, 40 Eigenmannia sp. specimens were captured from this region and examined. The fish were anesthetized, slaughtered and dissected for sexing (gonad evaluation) and studying parasites and cysts; after diagnosing the presence of the myxozoans using a light microscope, small fragments of the brain and spinal cord were removed for histological processing and Hematoxylin-Eosin and Ziehl-Neelsen staining. Histopathological analysis of the brain and spinal cord, based on histological sections stained with Hematoxylin-Eosin, pronounced and diffuse edema in these tissues, and congestion, degeneration, and focal necrosis of the cerebral cortex. The present study describes lymphocytic meningoencephalomyelitis associated with infection by Myxobolus sp. in the central nervous system of Eigenmannia sp.


2017 ◽  
Vol 5 (1) ◽  
pp. 56
Author(s):  
Vinod Gautam ◽  
Renu Gupta

Tuberculosis of the central nervous system poses a diagnostic and therapeutic challenge to the physicians. Early diagnosis is warranted to reduce morbidity and mortality associated with this disease. Microbiological investigations for the diagnosis of tuberculosis of central nervous system are of paramount significance. However, due to relative inaccessibility of approaching infected lesions in eloquent area of brain and difficulty in retrieving pathological sample from deep located regions of the brain and spinal cord without causing any neurological deficit, there is need to review the relevance of available microbiological and biochemical tests. Some tests which may be very specific like AFB microscopy and culture may not be positive in many cases due to paucibacillary CSF sample or pus or granulation tissue from the brain or spine. So, authors have reviewed different biochemical and microbiological tests and suggested a pragmatic and step wise practical approach for use of laboratory investigations in clinical management of CNS TB patients.


Sign in / Sign up

Export Citation Format

Share Document