interendothelial junctions
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i235-i235
Author(s):  
Carmen A. Vlahu ◽  
Jan Aten ◽  
Marijke de Graaff ◽  
Dick G. Struijk ◽  
Raymond T. Krediet

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Dan N. Predescu ◽  
Radu Neamu ◽  
Cristina Bardita ◽  
Minhua Wang ◽  
Sanda A. Predescu

Intersectin-1s (ITSN-1s), a protein containing five SH3 (A-E) domains, regulates via the SH3A the function of dynamin-2 (dyn2) at the endocytic site. ITSN-1s expression was modulated in mouse lung endothelium by liposome delivery of either a plasmid cDNA encoding myc-SH3A or a specific siRNA targeting ITSN-1 gene. The lung vasculature of SH3A-transduced and ITSN-1s- deficient mice was perfused with gold albumin (Au-BSA) to analyze by electron microscopy the morphological intermediates and pathways involved in transendothelial transport or with dinitrophenylated (DNP)-BSA to quantify by ELISA its transport. Acute modulation of ITSN-1s expression decreased the number of caveolae, impaired their transport, and opened the interendothelial junctions, while upregulating compensatory nonconventional endocytic/transcytotic structures. Chronic inhibition of ITSN-1s further increased the occurrence of nonconventional intermediates and partially restored the junctional integrity. These findings indicate that ITSN-1s expression is required for caveolae function and efficient transendothelial transport. Moreover, our results demonstrate that ECs are highly adapted to perform their transport function while maintaining lung homeostasis.


2010 ◽  
Vol 29 (3) ◽  
pp. E4 ◽  
Author(s):  
Sanjay Yadla ◽  
Pascal M. Jabbour ◽  
Robert Shenkar ◽  
Changbin Shi ◽  
Peter G. Campbell ◽  
...  

Tremendous insight into the molecular and genetic pathogenesis of cerebral cavernous malformations (CCMs) has been gained over the past 2 decades. This includes the identification of 3 distinct genes involved in familial CCMs. Still, a number of unanswered questions regarding the process from gene mutation to vascular malformation remain. It is becoming more evident that the disruption of interendothelial junctions and ensuing vascular hyperpermeability play a principal role. The purpose of this review is to summarize the current understanding of CCM genes, associated proteins, and functional pathways. Promising molecular and genetic therapies targeted at identified molecular aberrations are discussed as well.


2008 ◽  
Vol 295 (2) ◽  
pp. L363-L369 ◽  
Author(s):  
Ramaswamy Ramchandran ◽  
Dolly Mehta ◽  
Stephen M. Vogel ◽  
Muhammad K. Mirza ◽  
Panos Kouklis ◽  
...  

Activation of the Rho GTPase Cdc42 has been shown in endothelial cell monolayers to prevent disassembly of interendothelial junctions and the increase in endothelial permeability. Here, we addressed the in vivo role of Cdc42 activity in mediating endothelial barrier protection in lungs by generating mice expressing the dominant active mutant V12Cdc42 protein in vascular endothelial cells targeted via the VE-cadherin promoter. These mice developed normally and exhibited constitutively active GTP-bound Cdc42. The increase in lung vascular permeability and gain in tissue water content in response to intraperitoneal lipopolysaccharide challenge (7 mg/kg) were markedly attenuated in the transgenic mice. To address the basis of the protective effect, we observed that expression of V12Cdc42 mutant in endothelial monolayers reduced the decrease in transendothelial electrical resistance, a measure of opening of interendothelial junctions, thus indicating that Cdc42 activity preserved junctional integrity. RhoA activity in V12Cdc42-expressing endothelial monolayers was reduced compared with untransfected cells, suggesting that activated Cdc42 functions by counteracting the canonical RhoA-mediated mechanism of endothelial hyperpermeability. Therefore, Cdc42 activity of microvessel endothelial cells is a critical determinant of junctional barrier restrictiveness and may represent a means of therapeutically modulating increased lung vascular permeability and edema formation.


2006 ◽  
Vol 291 (4) ◽  
pp. L764-L771 ◽  
Author(s):  
Janie Orrington-Myers ◽  
Xiaopei Gao ◽  
Panos Kouklis ◽  
Michael Broman ◽  
Arshad Rahman ◽  
...  

Lung inflammatory disease is characterized by increased polymorphonuclear leukocyte (PMN) infiltration and vascular permeability. PMN infiltration into tissue involves signaling between endothelial cells and migrating PMNs, which leads to alterations in the organization of adherens junctions (AJs). We addressed the possible role of the protein constituents of AJs, endothelium-specific vascular-endothelial (VE)-cadherin, in the migration of PMNs. Studies were made using VE-cadherin mutant constructs lacking the extracellular domain (ΔEXD) or, additionally, lacking the COOH-terminus β-catenin-binding domain (ΔEXDΔβ). Either construct was transduced in pulmonary microvessel endothelia of mice using cationic liposome-encapuslated cDNA constructs injected intravenously. Optimal expression of constructs was seen by Western blot analysis within 24 h. Vessel wall liquid permeability measured as the lung microvessel capillary filtration coefficient increased threefold in ΔEXD-transduced lungs, indicating patency of interendothelial junctions, whereas the control ΔEXDΔβ construct was ineffective. To study lung tissue PMN recruitment, we challenged mice intraperitoneally with LPS (3 mg/kg) for 6 h and measured PMN numbers by bronchoalveolar lavage and their accumulation morphometrically in lung tissue. ΔEXD expression markedly reduced the PMN sequestration and migration seen in nontransfected (control wild type) or ΔEXDΔβ-transfected (negative control) mice challenged with LPS. In addition, ΔEXD transfection suppressed LPS-induced activation of NF-κB and consequent ICAM-1 expression. These results suggest that disassembly of VE-cadherin junctions serves as a negative signal for limiting transendothelial PMN migration secondary to decreased ICAM-1 expression in the mouse model of LPS-induced sepsis.


2002 ◽  
Vol 172 (3) ◽  
pp. 152-160 ◽  
Author(s):  
Michel Aurrand-Lions ◽  
Caroline Johnson-Leger ◽  
Chrystelle Lamagna ◽  
Harunobu Ozaki ◽  
Toru Kita ◽  
...  

2001 ◽  
Vol 86 (07) ◽  
pp. 308-315 ◽  
Author(s):  
Raffaella Spagnuolo ◽  
Gianfranco Bazzoni ◽  
Elisabetta Dejana

SummaryEndothelial cell-cell junctions play an important role in vascular hemostasis. The two junctional proteins VE-cadherin and JAM-1 are localized at adherens and tight junctions, respectively. VE-cadherin is only expressed by endothelial cells, suggesting that it can exert cell specific function. Absence of VE-cadherin or blocking of its adhesive activity prevents a normal organization of new vascular structures, suggesting that VE-cadherin may be a molecular target of antiangiogenic therapy. In addition, the ability of permeability-increasing agents and adherent leukocytes to modify VE-cadherin/catenin organization may be related to a role in the control of vascular permeability and leukocyte infiltration. JAM-1 is an integral membrane protein expressed in endothelial and epithelial cells. Its extracellular domain can dimerize and bind homophilically. The intracellular domain (and in particular a PDZ-binding motif) enables JAM-1 to interact with structural and signaling proteins. Study of the molecular interactions of JAM-1 may help explain mechanisms of JAM-mediated function, such as control of paracellular permeability and leukocyte transmigration.


1998 ◽  
Vol 187 (6) ◽  
pp. 903-915 ◽  
Author(s):  
Dian Feng ◽  
Janice A. Nagy ◽  
Kathryn Pyne ◽  
Harold F. Dvorak ◽  
Ann M. Dvorak

Circulating leukocytes are thought to extravasate from venules through open interendothelial junctions. To test this paradigm, we injected N-formyl-methionyl-leucyl-phenylalanine (FMLP) intradermally in guinea pigs, harvesting tissue at 5–60 min. At FMLP-injected sites, venular endothelium developed increased surface wrinkling and variation in thickness. Marginating neutrophils formed contacts with endothelial cells and with other neutrophils, sometimes forming chains of linked leukocytes. Adherent neutrophils projected cytoplasmic processes into the underlying endothelium, especially at points of endothelial thinning. To determine the pathway by which neutrophils transmigrated endothelium, we prepared 27 sets of serial electron microscopic sections. Eleven of these encompassed in their entirety openings through which individual neutrophils traversed venular endothelium; in 10 of the 11 sets, neutrophils followed an entirely transendothelial cell course unrelated to interendothelial junctions, findings that were confirmed by computer-assisted three-dimensional reconstructions. Having crossed endothelium, neutrophils often paused before crossing the basal lamina and underlying pericytes that they also commonly traversed by a transcellular pathway. Thus, in response to FMLP, neutrophils emigrated from cutaneous venules by a transcellular route through both endothelial cells and pericytes. It remains to be determined whether these results can be extended to other inflammatory cells or stimuli or to other vascular beds.


Sign in / Sign up

Export Citation Format

Share Document