ARCHITECHTURE OF MULTIPLE ERROR CORRECTION SYSTEM FOR DATA STORAGE DEVICES

Author(s):  
E. P. Ovsiannikov ◽  
2021 ◽  
pp. 2001181
Author(s):  
Jia‐Qin Yang ◽  
Ye Zhou ◽  
Su‐Ting Han

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1286
Author(s):  
Murtaza Bohra ◽  
Vidya Alman ◽  
Rémi Arras

More people, more cities; the energy demand increases in consequence and much of that will rely on next-generation smart materials. Zn-ferrites (ZnFe2O4) are nonconventional ceramic materials on account of their unique properties, such as chemical and thermal stability and the reduced toxicity of Zn over other metals. Furthermore, the remarkable cation inversion behavior in nanostructured ZnFe2O4 extensively cast-off in the high-density magnetic data storage, 5G mobile communication, energy storage devices like Li-ion batteries, supercapacitors, and water splitting for hydrogen production, among others. Here, we review how aforesaid properties can be easily tuned in various ZnFe2O4 nanostructures depending on the choice, amount, and oxidation state of metal ions, the specific features of cation arrangement in the crystal lattice and the processing route used for the fabrication.


2013 ◽  
Vol 24 (13) ◽  
pp. 135202 ◽  
Author(s):  
A C Pearson ◽  
S Jamieson ◽  
M R Linford ◽  
B M Lunt ◽  
R C Davis
Keyword(s):  

MRS Bulletin ◽  
1990 ◽  
Vol 15 (3) ◽  
pp. 45-52 ◽  
Author(s):  
A.M. Homola ◽  
C.M. Mate ◽  
G.B. Street

Metallic alloy thin film media and ever decreasing head-to-media spacing make severe demands on storage devices. Decreasing head-to-media separation is critical for high storage densities but it also leads to increased slider-disk interactions, which can cause slider and disk wear or even head crashes. Wear can also occur when drives start and stop when the slider contacts the disk at relatively high speeds. The reliability and durability of thin film disks, which provide much higher areal density than conventional oxide disks with particulate media, are achieved by the use of very thin overcoat materials and surface lubricants. This article summarizes the approaches taken in the industry to enhance the tribological performance of magnetic media, with special emphasis on the basic understanding of the processes occurring at the slider-disk interface.The continuous rise in the demand for storage capacity at a competitive price is the prime motivator of the changes we have seen in the data storage industry. It is clearly stimulating the present move away from particulate media, which has long dominated all fields of data storage, i.e., tape, rigid, and flexible disks, to the thin film storage media. Particulate storage devices use magnetic media formulated by dispersing magnetic particles, usually iron oxides, in an organic binder. In thin film storage devices, the storage medium is a continuous magnetic film, usually a cobalt alloy, made either by sputtering or by electroless plating.


Author(s):  
Mark D. Welch ◽  
Jens Najorka ◽  
Michael S. Rumsey ◽  
John Spratt

ABSTRACT Frustrated magnetic phases have been a perennial interest to theoreticians wishing to understand the energetics and behavior of quasi-chaotic systems at the quantum level. This behavior also has potentially wide applications to developing quantum data-storage devices. Several minerals are examples of such phases. Since the definition of herbertsmithite, Cu3ZnCl2(OH)6, as a new mineral in 2004 and the rapid realization of the significance of its structure as a frustrated antiferromagnetic phase with a triangular magnetic lattice, there has been intense study of its magnetic properties and those of synthetic compositional variants. In the past five years it has been recognized that the layered copper hydroxyhalides barlowite, Cu4BrF(OH)6, and claringbullite, Cu4FCl(OH)6, are also the parent structures of a family of kagome phases, as they also have triangular magnetic lattices. This paper concerns the structural behavior of claringbullite that is a precursor to the novel frustrated antiferromagnetic states that occur below 30 K in these minerals. The reversible hexagonal (P63/mmc) ↔ orthorhombic (Pnma or Cmcm) structural phase transition in barlowite at 200−270 K has been known for several years, but the details of the structural changes that occur through the transition have been largely unexplored, with the focus instead being on quantifying the low-temperature magnetic behavior of the orthorhombic phase. This paper reports the details of the structural phase transition in natural claringbullite at 100−293 K as studied by single-crystal X-ray diffraction. The transition temperature has been determined to lie between 270 and 293 K. The progressive disordering of Cu at the unusual trigonal prismatic Cu(OH)6 site on heating is quantified through the phase transition for the first time, and a methodology for refining this disorder is presented. Key changes in the behavior of Cu(OH)4Cl2 octahedra in claringbullite have been identified that suggest why the Pnma structure is likely stabilized over an alternative Cmcm structure. It is proposed that the presence of a non-centrosymmetric octahedron in the Pnma structure allows more effective structural relaxation during the phase transition than can be achieved by the Cmcm structure, which has only centrosymmetric octahedra.


Author(s):  
Martin Tomlinson ◽  
Cen Jung Tjhai ◽  
Marcel A. Ambroze ◽  
Mohammed Ahmed ◽  
Mubarak Jibril

Sign in / Sign up

Export Citation Format

Share Document