scholarly journals Planetary Gearbox Prototype Development and Manufacturing

2021 ◽  
Vol 15 (4) ◽  
pp. 534-540
Author(s):  
Jasmin Smajic ◽  
Isad Saric ◽  
Adil Muminovic ◽  
Muamer Delic ◽  
Adis J. Muminovic

Goal of this research was to develop and manufacture planetary gearbox prototype using rapid prototyping technology (additive manufacturing). Developed prototype was used to visually analyse the design of the planetary gearbox. Also, it was used to improve and innovate education of students on several courses at Mechanical Design study program at Faculty of Mechanical Engineering. It is shown that low cost rapid prototyping technology can be used to manufacture prototypes of complex machines and machine elements. Prototypes manufactured using this technology have same functionality like the real one. Main limitation is the fact that they cannot sustain real world loads and stresses. This paper shows opportunities which low cost rapid prototyping technology is offering in improvement and innovation of education process at engineering schools and faculties. All complex and heavy machines can be manufactured using this type of technology and on that way more precisely presented to the students.

Author(s):  
Luis Arturo Gómez Malagón ◽  
João Luiz Vilar Dias
Keyword(s):  

2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 74
Author(s):  
Alejandro Sobron ◽  
David Lundström ◽  
Petter Krus

Testing of untethered subscale models, often referred to as subscale flight testing, has traditionally had a relatively minor, yet relevant use in aeronautical research and development. As recent advances in electronics, rapid prototyping and unmanned-vehicle technologies expand its capabilities and lower its cost, this experimental method is seeing growing interest across academia and the industry. However, subscale models cannot meet all similarity conditions required for simulating full-scale flight. This leads to a variety of approaches to scaling and to other alternative applications. Through a literature review and analysis of different scaling strategies, this study presents an overall picture of how subscale flight testing has been used in recent years and synthesises its main issues and practical limitations. Results show that, while the estimation of full-scale characteristics is still an interesting application within certain flight conditions, subscale models are progressively taking a broader role as low-cost technology-testing platforms with relaxed similarity constraints. Different approaches to tackle the identified practical challenges, implemented both by the authors and by other organisations, are discussed and evaluated through flight experiments.


Author(s):  
Chanun Suwanpreecha ◽  
Phanuphak Seensattayawong ◽  
Vorawat Vadhanakovint ◽  
Anchalee Manonukul

Author(s):  
Salman Ahmad ◽  
Muhammad Shakeel ◽  
Nadeem Iqbal ◽  
Mohsin Amin ◽  
Khalid Rahman

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


2019 ◽  
Vol 4 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Bineh G. Ndefru ◽  
Bryan S. Ringstrand ◽  
Sokhna I.-Y. Diouf ◽  
Sönke Seifert ◽  
Juan H. Leal ◽  
...  

Combining bottom-up self-assembly with top-down 3D photoprinting affords a low cost approach for the introduction of nanoscale features into a build with low resolution features.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Sign in / Sign up

Export Citation Format

Share Document