scholarly journals Complete Stability Intervals of Symmetric Matrices with Multiple Parameters — Generalization of the Stability Feeler

2011 ◽  
Vol 44 (1) ◽  
pp. 11368-11373
Author(s):  
Tadasuke Matsuda ◽  
Michihiro Kawanishi ◽  
Tatsuo Narikiyo
2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Y. Xu ◽  
J. J. Zhao

The new explicit linear three-order four-step methods with longest interval of absolute stability are proposed. Some numerical experiments are made for comparing different kinds of linear multistep methods. It is shown that the stability intervals of proposed methods can be longer than that of known explicit linear multistep methods.


Author(s):  
Anthony Collé ◽  
Jérôme Limido ◽  
Thomas Unfer ◽  
Jean-Paul Vila

Abstract We focus in this paper on the use of a meshless numerical method called Smooth Particle Hydrodynamics (SPH), to solve fragmentation issues as Hyper Velocity Impact (HVI). Contrary to classical grid-based methods, SPH does not need any opening criteria which makes it naturally well suited to handle material failure. Nevertheless, SPH schemes suffer from well-known instabilities questioning their accuracy and activating nonphysical processes as numerical fragmentation. Many stabilizing tools are available in the literature based for instance on dissipative terms, artificial repulsive forces, stress points or Particle Shifting Techniques (PST). However, they either raise conservation and consistency issues, or drastically increase the computation times. It limits then their effectiveness as well as their industrial application. To achieve robust and consistent stabilization, we propose an alternative scheme called γ -SPH-ALE. Firstly implemented to solve Monophasic Barotropic flows, it is secondly extended to the solid dynamics. Particularly, based on the ALE framework, its governing equations include advective terms allowing an arbitrary description of motion. Thus, in addition of accounting for a stabilizing low-Mach scheme, a PST is implemented through the arbitrary transport velocity field, the asset of ALE formulations. Through a nonlinear stability analysis, CFL-like conditions are formulated ensuring the scheme conservativity, robustness, stability and consistency. Besides, stability intervals are defined for the scheme parameters determining entirely the stability field. Its implementation on several test cases reveals particularly that the proposed scheme faithfully reproduces the strain localization in adiabatic shear bands, a precursor to failure. By preventing spurious oscillations in elastic waves and correcting the so-called tensile instability, it increases both stability and accuracy with respect to classical approaches.


2021 ◽  
Vol 4 ◽  
pp. 125-136
Author(s):  
Leonid Movchan ◽  
◽  
Sergey Movchan ◽  

The paper considers two types of boundaries of the D-partition in the plane of one parameter of linear continuous systems given by the characteristic equation with real coefficients. The number of segments and intervals of stability of the X-partition curve is estimated. The maximum number of stability intervals is determined for different orders of polynomials of the equation of the boundary of the D-partition of the first kind (even order, odd order, one of even order, and the other of odd order). It is proved that the maximum number of stability intervals of a one-parameter family is different for all cases and depends on the ratio of the degrees of the polynomials of the equation of the D-partition curve. The derivative of the imaginary part of the expression of the investigated parameter at the initial point of the D-partition curve is obtained in an analytical form, the sign of which depends on the ratio of the coefficients of the characteristic equation and establishes the stability of the first interval of the real axis of the parameter plane. It is shown that for another type of the boundary of the D-partition in the plane of one parameter, there is only one interval of stability, the location of which, as for the previous type of the boundary of the stability region (BSR), is determined by the sign of the first derivative of the imaginary part of the expression of the parameter under study. Consider an example that illustrates the effectiveness of the proposed approach for constructing a BSR in a space of two parameters without using «Neimark hatching» and constructing special lines. In this case, a machine implementation of the construction of the stability region is provided. Considering that the problem of constructing the boundary of the stability region in the plane of two parameters is reduced to the problem of determining the BSR in the plane of one parameter, then the given estimates of the maximum number of stability regions in the plane of one parameter allow us to conclude about the number of maximum stability regions in the plane of two parameters, which are of practical interest. In this case, one of the parameters can enter nonlinearly into the coefficients of the characteristic equation.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4095
Author(s):  
Nuria Lafuente-Gómez ◽  
Paula Milán-Rois ◽  
David García-Soriano ◽  
Yurena Luengo ◽  
Marco Cordani ◽  
...  

Magnetic nanoparticles (MNP) are employed as nanocarriers and in magnetic hyperthermia (MH) for the treatment of cancers. Herein, a smart drug delivery system composed of MNP functionalized with the cytotoxic drug gemcitabine (MNP-GEM) has been thoroughly evaluated. The linker employed is based on a disulfide bond and allows the controlled release of GEM under a highly reducing environment, which is frequently present in the cytoplasm of tumor cells. The stability, MH, and the interaction with plasma proteins of the nanoparticles are evaluated, highlighting their great potential for biological applications. Their cytotoxicity is assessed in three pancreatic cancer cell lines with different sensitivity to GEM, including the generation of reactive oxygen species (ROS), the effects on the cell cycle, and the mechanisms of cell death involved. Remarkably, the proposed nanocarrier is better internalized than unmodified nanoparticles, and it is particularly effective in PANC-1 cells, resistant to GEM, but not in non-tumoral keratinocytes. Additionally, its combination with MH produces a synergistic cytotoxic effect in all cancer cell lines tested. In conclusion, MNP-GEM presents a promising potential for treating pancreatic cancer, due to multiple parameters, such as reduced binding to plasma proteins, increased internalization, and synergistic activity when combined with MH.


Author(s):  
Naci Zafer

Stabilization of time delay systems is currently a mainstream of research. In this paper, a delayed feedback controller is considered for internet-based teleoperation, where the master and the slave manipulators are bilaterally connected through a communication channel. A frequency based approach is employed for the stability analysis of teleoperation in spite of varying time delays. The derived approach is exact in telling weather the system is stable, whenever the system parameters including the delay are prescribed. The analysis formulates the stability intervals as delay varies. It is also shown how delayed negative feedback is able to stabilize oscillatory system dynamics. The results are illustrated with numerical examples.


Author(s):  
Nejat Olgac ◽  
Rifat Sipahi

A new methodology is presented for assessing the stability posture of a general class of linear time-invariant – neutral time-delayed systems (LTI-NTDS). It is based on a “Cluster Treatment of Characteristic Roots CTCR” paradigm. The technique offers a number of unique features: It returns exact bounds of time delay for stability, furthermore it yields the number of unstable characteristic roots of the system in an explicit and non-sequentially evaluated function of time delay. As a direct consequence of the latter feature, the new methodology creates entirely, all existing stability intervals of delay, τ. It is shown that the CTCR inherently enforces an intriguing necessary condition for τ-stabilizability, which is the main contribution of this paper. This, so called “small delay” effect, was recognized earlier for NTDS, only through some cumbersome mathematics. In addition to the above listed characteristics, the CTCR is also unique in handling systems with unstable starting posture for τ = 0, which may be τ-stabilized for higher values of delay. Example cases are provided.


Sign in / Sign up

Export Citation Format

Share Document