Synthesis and Dynamic NMR Study of Fluorinated Dialkyl 2-[(tert-butylimino)-methylene]-3-[(2-alkoxy-2-oxoacetyl)-2-fluoroanilino]-succinates

2005 ◽  
Vol 2005 (8) ◽  
pp. 537-539 ◽  
Author(s):  
Issa Yavari ◽  
Farough Nasiri ◽  
Hoorieh Djahaniani ◽  
Hamid R. Bijanzadeh

The 1:1 adduct produced in the reaction between tert-butyl isocyanide and dialkyl acetylenedicarboxylates was trapped by alkyl 2-fluoro-anilino-2-oxo-acetates or ethyl 2-oxo-2-(trifluoromethylanilino)-acetate to produce functionalised ketenimines in good yields. Dynamic NMR effects were observed in the 1H NMR spectra of these compounds as a result of restricted rotation around the single bond linking the aryl group to the ketenimine system. The free energy of activation (ΔG≠) for this process is 64.9–66.5 kJ mol−1.

1985 ◽  
Vol 40 (11) ◽  
pp. 1555-1557 ◽  
Author(s):  
Teodor-Silviu Balaban ◽  
Mircea D. Gheorghiu ◽  
Christian Roussel ◽  
Alexandru T. Balaban

Various alkyl- or aryl-substituted N-(1-indanyl)-pyridinium perchlorates present evidence for restricted rotation around the C(sp3)-N + (sp2) single bond giving rise to chiral rotamers as shown by their 1H NMR spectra.


1991 ◽  
Vol 56 (7) ◽  
pp. 1505-1511 ◽  
Author(s):  
Antonín Lyčka ◽  
Karel Palát
Keyword(s):  
1H Nmr ◽  
H Nmr ◽  

The 15N, 13C, and 1H NMR spectra of the reaction products from arylguanidines with two mols of chloroformate esters have been measured. With application of the corresponding 15N isotopomer it has been proved that the reaction products have the structures IIIa-IIIc.


1976 ◽  
Vol 31 (8) ◽  
pp. 1017-1018 ◽  
Author(s):  
H. Oehling ◽  
F. Baer

Abstract Polymethine oxonols show temperature dependent 1H-NMR-spectra because of restricted rotation of the end groups. The dependence of the value of the corresponding free enthalpy of activation AGt on the length of the poly-methine chain can be explained by the change of the π-electron contribution to ⊿G≠.


2019 ◽  
Vol 233 (8) ◽  
pp. 1109-1127
Author(s):  
Biraj Kumar Barman ◽  
Kanak Roy ◽  
Mahendra Nath Roy

Abstract Structurally different Molecules namely Pentoxifylline and Pralidoxim were chosen along with α-cyclodextrin and β-cyclodextrin to study host-guest inclusion phenomena. The formations of host guest inclusion complexes were confirmed by studying 1H-NMR spectra, FT-IR spectra, apparent molar volume and viscosity co-efficient. The stabilities of inclusion complexes were compared calculating the binding constant from UV-VIS spectroscopic study. The 1:1 stoichiometry of the inclusion complexes were also determined by analysing the Jobs plot and surface tension data. The values for Gibbs’ free energy were found negative for both the processes. Based on all the above experiments the inclusion processes were found feasible for both the compounds. These types of inclusion complexes are of high interest in the field of research and industry as these are used as drug delivery systems.


1992 ◽  
Vol 70 (3) ◽  
pp. 849-855 ◽  
Author(s):  
Mark R. MacIntosh ◽  
Marco L. H. Gruwel ◽  
Katherine N. Robertson ◽  
Roderick E. Wasylishen

A 2H and 14N NMR study of the solid methylammonium hexahalotellurates, (MA)2TeX6 (MA = CH3ND3+ or CD3NH3+, X = Cl, Br, and I), has been undertaken to characterize the dynamics of the methylammonium (MA) ion as a function of temperature. At room temperature, the MA ion in the hexachlorotellurate (solid II) is confined to C3 jumps about the C—N axis while a small angle libration of the C—N axis is occurring. In the room temperature phase, solid I, of (MA)2TeBr6 and (MA)2TeI6 the MA ions are performing overall reorientations on the ps time scale, averaging the 2H nuclear quadrupolar interactions to zero. Variable temperature 2H NMR spin-lattice relaxation times, T1, indicate an activation energy, EA, for "isotropic" reorientations of the CH3ND3+ ion of 5.2 ± 0.5 and 2.6 ± 0.3 kJ mol−1 for X = Br and I, respectively. Deuterium T1 values for C-deuterated MA ion in the hexaiodotellurate indicate an EA for whole-ion reorientation of 3.1 ± 0.3 kJ mol−1. At any given temperature, the correlation time, τc, derived from the T1 results was found to be the same for the two deuterium-labelled hexaiodotellurates. The similarity of both the EA and the τc values implies correlated motion of the methyl and ammonium groups. The 14N T1 results for solid I of (MA)2TeI6 indicate that C—N axis motions, with an EA = 5.6 ± 0.6 kJ mol−1, are more hindered than N—D or C—D bond dynamics. The 2H NMR spectra for (MA)2TeI6 (solid II) and (MA)2TeBr6 (solids II, III, and IV) are characterized by a Pake doublet line shape. The measured peak-to-peak splittings are less than what is predicted by C3 motion about the molecular symmetry axis. It is possible to model these line shapes by postulating that C3 rotations of the methyl and ammonium groups occur as the C—N axis librates in an effective cone about the position of the static molecular axis. For (CH3ND3)2TeBr6 and (CD3NH3)3TeBr6 the peak-to-peak splittings in the 2H NMR spectra were measured as a function of temperature in solid phases II, III, and IV and were found to be similar. Finally, the 2H NMR line shape relaxation for (MA)2TeBr6 (solid III) displays an orientation dependence indicating that rotations about the C—N axis are discrete rather than diffusive in nature. For solid phase II of (MA)2TeCl6, the line shape is observed to relax isotropically, implying that continuous C3 rotations are taking place. Keywords: 2H and 14N NMR, methylammonium hexahalotellurates, molecular motion.


2006 ◽  
Vol 84 (12) ◽  
pp. 1648-1657 ◽  
Author(s):  
K C Brown ◽  
M El-Bermani ◽  
Y Upadrashta ◽  
J A Weil

We have studied the 1H NMR spectra of 2,2′-dimethyl-1-(2,4,6-trinitrophenyl)hydrazine at 300 and 500 MHz in seven liquid solvents, with a view to learning details of the internal conformational changes taking place as a function of temperature and of the solvent. These molecules in liquid solution occur as interconverting enantiomorphic pairs (atropisomers). Advanced techniques for obtaining the correct activation energies and pseudo-thermodynamic parameters have been utilized, and these parameters are listed and discussed. Our results point to a transformation between the pair of atropisomers that is not quite as complicated as one might have encountered in that the solvent does not affect ΔG‡ in any major fashion. Molecular orbital calculations clarified some of the chemical shifts observed for both 1H and 13C. One goal of this study was to enable a detailed comparison with similar results available for 2,2′-diphenyl-1-(2,4,6-trinitrophenyl)hydrazine.Key words: dynamic NMR, dimethylpicrylhydrazine, hindered rotation, atropisomers, activation parameters.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Agnieszka Janiak-Osajca ◽  
Anna Timoszyk

The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - H(II)) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. (31)P- and (1)H-NMR methods were used to describe the process of fusion. (31)P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca(2+) ions (natural fusiogenic agent). A (31)P-NMR spectrum with the characteristic shape of the H(II) phase was obtained for the molar Ca(2+)/PS ratio of 2.0. During the study, (1)H-NMR and (31)P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr(3+) ions was constant), were also recorded. The presence of the paramagnetic Pr(3+) ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca(2+) ions is the H(II) phase. The experimental results obtained are in agreement with the topological model as well.


1999 ◽  
Vol 64 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Marina Madre ◽  
Natella Panchenko ◽  
Alexander Golbraikh ◽  
Regina Zhuk ◽  
Upendra K. Pandit ◽  
...  

Alkylations of 9- and 7-[(2-acetoxyethoxy)methyl]-N2-acetylguanine with alkyl halogenides in the presence of base have been investigated affording a new route to the preparation of 1,N2-dimethyl- as well as O6-benzyl-9(7)-alkoxyalkylguanines. 1H NMR spectra revealed that the 1,N2-dimethyl derivatives exist as mixtures of two conformers at room temperature due to the restricted rotation about the C2-N2 bond. These findings agreed with conformational calculations.


Sign in / Sign up

Export Citation Format

Share Document