scholarly journals Thermobaric depth settings of sedimentary rock basins and their fluid dynamics: Communication 3. Superhigh pressures in the stratisphere and salt diapirs

Author(s):  
V. N. Kholodov

The article discusses the patterns of location and the conditions for the formation of salt diapirs. Their formation is associated with thick salt cjmpleses in which phase transformations within closed physicochemical systems form ultrahigh pressures. The latter are the cause of the flow of salts and their penetration through tectonic cracks and fractures to the earth's surface. The similarity of the formation of salt diapirs and mud volcanoes is emphasized. The possibility of the influence of ultrahigh pressures on the autonomous folding of the sedimentary cover is assumed.

Author(s):  
V. N. Kholodov

The article discusses the patterns of placement of mud volcanoes, their spatial connection with tectonic faults, anticlinal uplifts, oil and gas fields. The connection of mud volcanic activity with ultrahigh pressures arising in the clay strata of the stratisphere as a result of phase transformations of clay minerals and organic matter is argued. The role of earthquakes in the formation of fractured clays, increasing their permeability and the formation of mud crates is emphasized. On the example of the mud volcano Aligula (Turkmenistan), the processes of dilution of sandstones and clays, the formation of volcanic mud-crates are considered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan I. Soto ◽  
Mahdi Heidari ◽  
Michael R. Hudec

AbstractStructural systems involving mobile shale represent one of the most difficult challenges for geoscientists dedicated to exploring the subsurface structure of continental margins. Mobile-shale structures range from surficial mud volcanoes to deeply buried shale diapirs and shale-cored folds. Where mobile shales occur, seismic imaging is typically poor, drilling is hazardous, and established principles to guide interpretation are few. The central problem leading to these issues is the poor understanding of the mechanical behaviour of mobile shales. Here we propose that mobile shales are at critical state, thus we define mobile shales as “bodies of clay-rich sediment or sedimentary rock undergoing penetrative, (visco-) plastic deformation at the critical state”. We discuss how this proposition can explain key observations associated with mobile shales. The critical-state model can explain the occurrence of both fluidized (no grain contact) shales (e.g., in mud volcanoes) and more viscous shales flowing with grain-to-grain contact (e.g., in shale diapirs), mobilization of cemented and compacted shales, and the role of overpressure in shale mobility. Our model offers new avenues for understanding complex and fascinating mobile-shale structures.


Author(s):  
Akper A. Feyzullayev ◽  
Ian Lerche

Generalizations and analyses are given of the data accumulated to date on the content of Organic Matter (OM) in formation waters of various stratigraphic complexes, as well as of mud volcanoes, and the correlation with OM in South Caspian Basin (SCB) sedimentary rocks. Results are based on about 300 analyses of formation waters and waters of mud volcanoes, as well as on more than 400 analyses of the content of OM in rocks (outcrops and wells from both onshore and offshore petroleum fields of the SCB). The stratigraphic interval covers the period from the Lower Pliocene to the Jurassic, and the depth interval from 73 m to 6043 m. In these intervals, the values of Dissolved Organic Matter (DOM) in reservoir waters vary from 4.1 mg/L to 271.2 mg/L, averaging (219 analyses) 48.9 mg/L. A good correlation has been established between the values of DOM and OM in rocks. Paleogene and Jurassic rocks have the highest correlations. DOM varies with depth with an increase in value from a depth of about 3.3 km, likely due to catagenetic transformation of OM into hydrocarbons in the rock–water system. The highest values of DOM are for waters with mineralization less than 50 g/L. Mud volcano waters are characterized by low levels of DOM and low mineralization, likely due to the condensate nature. The results of the studies show that underground water, as one of the components of a single rock–water system of the Earth’s sedimentary cover, together with the rocks, participates in the processes of hydrocarbon generation and migration.


2021 ◽  
Author(s):  
Beatrice Maria Sole Giambastiani ◽  
Marco Antonellini ◽  
Massimo Nespoli ◽  
Massimo Bacchetti ◽  
Antonino Calafato ◽  
...  

Abstract The Nirano Salse, known since the Roman Times, are one of the most beautiful and scenic mud volcanoes areas of Italy with thousands of visitors every year. In this work, we apply hydrogeological techniques to characterize mud levels in the Salse by means of GPS-RTK positioning and continuous level logging within mud conduits. Our results suggest that different mud levels in mud volcanoes clusters are due to the different gas-liquid ratio in the conduits and not necessarily exclude interconnection at depth, a hypothesis, on the other hand, that seems strengthened by mud level time series correlations. The presence of shallow aquifers at a depth of 5 to 30 m is also supported by our field data. These shallow aquifers may provide a temporary storage for the ascending gas and when fluid pressure in these aquifers exceeds the tensional strength of the sedimentary rock, leakage of fluids to the surface would occur.


Author(s):  
N. Narimanov ◽  
G. Gahramanov ◽  
M. Babayev ◽  
S. Shpyrko ◽  
G. Nasibova ◽  
...  

Mud volcanoes are indicators of the oil and gas generation processes in the hydrocarbon basins and can show the hydrocarbon potential of local anticline structures where they arise. The quantitative study of the composition of gas ejecta from volcanoes and their age can reveal the generation zones in the sedimentary cover and help assess the hydrocarbon bearing potential of an area. Mud volcanoes are often spatially related to the disjunctive faults intersections, and, on the other hand, there is a clear correlation between the location of the major oil and gas deposits and deep faults. Therefore, ejecta of mud volcanoes present a tool for geochemical probing of potentially hydrocarbon bearing structures. We used a spatial analysis of the composition of gases in mud volcanoes in order to reveal the prospective hydrocarbon targets in Baku Archipelago, located in the western part of the South Caspian Basin. The results confirm the prognosis for the existence of major gas condensate and gas accumulations in its deep water part. The calculations for the ages of mud volcanoes show that they refer to Cretaceous and Miocene-Pliocene periods.


Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Sign in / Sign up

Export Citation Format

Share Document